13,074 research outputs found

    Approximation Complexity of Complex-Weighted Degree-Two Counting Constraint Satisfaction Problems

    Get PDF
    Constraint satisfaction problems have been studied in numerous fields with practical and theoretical interests. In recent years, major breakthroughs have been made in a study of counting constraint satisfaction problems (or #CSPs). In particular, a computational complexity classification of bounded-degree #CSPs has been discovered for all degrees except for two, where the "degree" of an input instance is the maximal number of times that each input variable appears in a given set of constraints. Despite the efforts of recent studies, however, a complexity classification of degree-2 #CSPs has eluded from our understandings. This paper challenges this open problem and gives its partial solution by applying two novel proof techniques--T_{2}-constructibility and parametrized symmetrization--which are specifically designed to handle "arbitrary" constraints under randomized approximation-preserving reductions. We partition entire constraints into four sets and we classify the approximation complexity of all degree-2 #CSPs whose constraints are drawn from two of the four sets into two categories: problems computable in polynomial-time or problems that are at least as hard as #SAT. Our proof exploits a close relationship between complex-weighted degree-2 #CSPs and Holant problems, which are a natural generalization of complex-weighted #CSPs.Comment: A4, 10pt, 23 pages. This is a complete version of the paper that appeared in the Proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON 2011), Lecture Notes in Computer Science, vol.6842, pp.122-133, Dallas, Texas, USA, August 14-16, 201

    Plethysm and lattice point counting

    Full text link
    We apply lattice point counting methods to compute the multiplicities in the plethysm of GL(n)GL(n). Our approach gives insight into the asymptotic growth of the plethysm and makes the problem amenable to computer algebra. We prove an old conjecture of Howe on the leading term of plethysm. For any partition μ\mu of 3,4, or 5 we obtain an explicit formula in λ\lambda and kk for the multiplicity of SλS^\lambda in Sμ(Sk)S^\mu(S^k).Comment: 25 pages including appendix, 1 figure, computational results and code available at http://thomas-kahle.de/plethysm.html, v2: various improvements, v3: final version appeared in JFoC

    Young module multiplicities and classifying the indecomposable Young permutation modules

    Full text link
    We study the multiplicities of Young modules as direct summands of permutation modules on cosets of Young subgroups. Such multiplicities have become known as the p-Kostka numbers. We classify the indecomposable Young permutation modules, and, applying the Brauer construction for p-permutation modules, we give some new reductions for p-Kostka numbers. In particular we prove that p-Kostka numbers are preserved under multiplying partitions by p, and strengthen a known reduction given by Henke, corresponding to adding multiples of a p-power to the first row of a partition.Comment: 22 page
    • …
    corecore