50,005 research outputs found

    Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC

    Get PDF
    Degradation of water quality has been widely observed in China, and loadings of nitrogen (N) and other nutrients from agricultural systems play a key role in the water contamination. Process‐based biogeochemical models have been applied to quantify nutrient loading from nonpoint sources at the watershed scale. However, this effort is often hindered by the fact that few existing biogeochemical models of nutrient cycling are able to simulate the two‐dimensional soil hydrology. To overcome this challenge, we launched a new attempt to incorporate two fundamental hydrologic features, the Soil Conservation Service curve and the Modified Universal Soil Loss Equation functions, into a biogeochemistry model, Denitrification‐Decomposition (DNDC). These two features have been widely utilized to quantify surface runoff and soil erosion in a suite of hydrologic models. We incorporated these features in the DNDC model to allow the biogeochemical and hydrologic processes to exchange data at a daily time step. By including the new features, DNDC gained the additional ability to simulate both horizontal and vertical movements of water and nutrients. The revised DNDC was tested against data sets observed in a small watershed dominated by farmlands in a mountainous area of southwest China. The modeled surface runoff flow, subsurface drainage flow, sediment yield, and N loading were in agreement with observations. To further observe the behaviors of the new model, we conducted a sensitivity test with varied climate, soil, and management conditions. The results indicated that precipitation was the most sensitive factor determining the rate of N loading from the tested site. A Monte Carlo test was conducted to quantify the potential uncertainty derived by variations in four selected input parameters. This study demonstrates that it is feasible and effective to use enhanced biogeochemical models such as DNDC for quantifying N loadings by incorporating basic hydrological features into the model framework

    Modelling understorey dynamics in temperate forests under global change : challenges and perspectives

    Get PDF
    The understorey harbours a substantial part of vascular plant diversity in temperate forests and plays an important functional role, affecting ecosystem processes such as nutrient cycling and overstorey regeneration. Global change, however, is putting these understorey communities on trajectories of change, potentially altering and reducing their functioning in the future. Developing mitigation strategies to safeguard the diversity and functioning of temperate forests in the future is challenging and requires improved predictive capacity. Process-based models that predict understorey community composition over time, based on first principles of ecology, have the potential to guide mitigation endeavours but such approaches are rare. Here, we review fourteen understorey modelling approaches that have been proposed during the last three decades. We evaluate their inclusion of mechanisms that are required to predict the impact of global change on understorey communities. We conclude that none of the currently existing models fully accounts for all processes that we deem important based on empirical and experimental evidence. Based on this review, we contend new models are needed to project the complex impacts of global change on forest understoreys. Plant functional traits should be central to such future model developments, as they drive community assembly processes and provide valuable information on the functioning of the understorey. Given the important role of the overstorey, a coupling of understorey models to overstorey models will be essential to predict the impact of global change on understorey composition and structure, and how it will affect the functioning of temperate forests in the future

    Evaluation of the Land Surface Water Budget in NCEP/NCAR and NCEP/DOE Reanalyses using an Off-line Hydrologic Model

    Get PDF
    The ability of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis (NRA1) and the follow-up NCEP/Department of Energy (DOE) reanalysis (NRA2), to reproduce the hydrologic budgets over the Mississippi River basin is evaluated using a macroscale hydrology model. This diagnosis is aided by a relatively unconstrained global climate simulation using the NCEP global spectral model, and a more highly constrained regional climate simulation using the NCEP regional spectral model, both employing the same land surface parameterization (LSP) as the reanalyses. The hydrology model is the variable infiltration capacity (VIC) model, which is forced by gridded observed precipitation and temperature. It reproduces observed streamflow, and by closure is constrained to balance other terms in the surface water and energy budgets. The VIC-simulated surface fluxes therefore provide a benchmark for evaluating the predictions from the reanalyses and the climate models. The comparisons, conducted for the 10-year period 1988–1997, show the well-known overestimation of summer precipitation in the southeastern Mississippi River basin, a consistent overestimation of evapotranspiration, and an underprediction of snow in NRA1. These biases are generally lower in NRA2, though a large overprediction of snow water equivalent exists. NRA1 is subject to errors in the surface water budget due to nudging of modeled soil moisture to an assumed climatology. The nudging and precipitation bias alone do not explain the consistent overprediction of evapotranspiration throughout the basin. Another source of error is the gravitational drainage term in the NCEP LSP, which produces the majority of the model\u27s reported runoff. This may contribute to an overprediction of persistence of surface water anomalies in much of the basin. Residual evapotranspiration inferred from an atmospheric balance of NRA1, which is more directly related to observed atmospheric variables, matches the VIC prediction much more closely than the coupled models. However, the persistence of the residual evapotranspiration is much less than is predicted by the hydrological model or the climate models

    Issues Related to Incorporating Northern Peatlands into Global Climate Models

    Get PDF
    Northern peatlands cover ~3–4 million km2 (~10% of the land north of 45°N) and contain ~200–400 Pg carbon (~10–20% of total global soil carbon), almost entirely as peat (organic soil). Recent developments in global climate models have included incorporation of the terrestrial carbon cycle and representation of several terrestrial ecosystem types and processes in their land surface modules. Peatlands share many general properties with upland, mineral-soil ecosystems, and general ecosystem carbon, water, and energy cycle functions (productivity, decomposition, water infiltration, evapotranspiration, runoff, latent, sensible, and ground heat fluxes). However, northern peatlands also have several unique characteristics that will require some rethinking or revising of land surface algorithms in global climate models. Here we review some of these characteristics, deep organic soils, a significant fraction of bryophyte vegetation, shallow water tables, spatial heterogeneity, anaerobic biogeochemistry, and disturbance regimes, in the context of incorporating them into global climate models. With the incorporation of peatlands, global climate models will be able to simulate the fate of northern peatland carbon under climate change, and estimate the magnitude and strength of any climate system feedbacks associated with the dynamics of this large carbon pool

    Use of soil moisture information in yield models

    Get PDF
    There are no author-identified significant results in this report

    Developing a reliable strategy to infer the effective soil hydraulic properties from field evaporation experiments for agro-hydrological models

    Get PDF
    The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately

    A new approach for estimating northern peatland gross primary productivity using a satellite-sensor-derived chlorophyll index

    No full text
    Carbon flux models that are largely driven by remotely sensed data can be used to estimate gross primary productivity (GPP) over large areas, but despite the importance of peatland ecosystems in the global carbon cycle, relatively little attention has been given to determining their success in these ecosystems. This paper is the first to explore the potential of chlorophyll-based vegetation index models for estimating peatland GPP from satellite data. Using several years of carbon flux data from contrasting peatlands, we explored the relationships between the MERIS terrestrial chlorophyll index (MTCI) and GPP, and determined whether the inclusion of environmental variables such as PAR and temperature, thought to be important determinants of peatland carbon flux, improved upon direct relationships. To place our results in context, we compared the newly developed GPP models with the MODIS (Moderate Resolution Imaging Spectrometer) GPP product. Our results show that simple MTCI-based models can be used for estimates of interannual and intra-annual variability in peatland GPP. The MTCI is a good indicator of GPP and compares favorably with more complex products derived from the MODIS sensor on a site-specific basis. The incorporation of MTCI into a light use efficiency type model, by means of partitioning the fraction of photosynthetic material within a plant canopy, shows most promise for peatland GPP estimation, outperforming all other models. Our results demonstrate that satellite data specifically related to vegetation chlorophyll content may ultimately facilitate improved quantification of peatland carbon flux dynamics
    • 

    corecore