2,610 research outputs found

    Towards the integration of functions, relations and types in an AI programming language

    Get PDF
    This paper describes the design and implementation of the programming language PC-Life. This language integrates the functional and the Logic-oriented programming style and feature types supporting inheritance. This combination yields a language particularly suited to knowledge representation, especially for application in computational linguistics

    The Bayesian sampler : generic Bayesian inference causes incoherence in human probability

    Get PDF
    Human probability judgments are systematically biased, in apparent tension with Bayesian models of cognition. But perhaps the brain does not represent probabilities explicitly, but approximates probabilistic calculations through a process of sampling, as used in computational probabilistic models in statistics. Naïve probability estimates can be obtained by calculating the relative frequency of an event within a sample, but these estimates tend to be extreme when the sample size is small. We propose instead that people use a generic prior to improve the accuracy of their probability estimates based on samples, and we call this model the Bayesian sampler. The Bayesian sampler trades off the coherence of probabilistic judgments for improved accuracy, and provides a single framework for explaining phenomena associated with diverse biases and heuristics such as conservatism and the conjunction fallacy. The approach turns out to provide a rational reinterpretation of “noise” in an important recent model of probability judgment, the probability theory plus noise model (Costello & Watts, 2014, 2016a, 2017; Costello & Watts, 2019; Costello, Watts, & Fisher, 2018), making equivalent average predictions for simple events, conjunctions, and disjunctions. The Bayesian sampler does, however, make distinct predictions for conditional probabilities and distributions of probability estimates. We show in 2 new experiments that this model better captures these mean judgments both qualitatively and quantitatively; which model best fits individual distributions of responses depends on the assumed size of the cognitive sample

    Relational extensions to feature logic: applications to constraint based grammars

    Get PDF
    This thesis investigates the logical and computational foundations of unification-based or more appropriately constraint based grammars. The thesis explores extensions to feature logics (which provide the basic knowledge representation services to constraint based grammars) with multi-valued or relational features. These extensions are useful for knowledge representation tasks that cannot be expressed within current feature logics.The approach bridges the gap between concept languages (such as KL-ONE), which are the mainstay of knowledge representation languages in AI, and feature logics. Va¬ rious constraints on relational attributes are considered such as existential membership, universal membership, set descriptions, transitive relations and linear precedence con¬ straints.The specific contributions of this thesis can be summarised as follows: 1. Development of an integrated feature/concept logic 2. Development of a constraint logic for so called partial set descriptions 3. Development of a constraint logic for expressing linear precedence constraints 4. The design of a constraint language CL-ONE that incorporates the central ideas provided by the above study 5. A study of the application of CL-ONE for constraint based grammarsThe thesis takes into account current insights in the areas of constraint logic programming, object-oriented languages, computational linguistics and knowledge representation

    Typed feature formalisms as a common basis for linguistic specification

    Get PDF
    Typed feature formalisms (TFF) play an increasingly important role in CL and NLP. Many of these systems are inspired by Pollard and Sag\u27s work on Head-Driven Phrase Structure Grammar (HPSG), which has shown that a great deal of syntax and semantics can be neatly encoded within TFF. However, syntax and semantics are not the only areas in which TFF can be beneficially employed. In this paper, I will show that TFF can also be used as a means to model finite automata (FA) and to perform certain types of logical inferencing. In particular, I will (i) describe how FA can be defined and processed within TFF and (ii) propose a conservative extension to HPSG, which allows for a restricted form of semantic processing within TFF, so that the construction of syntax and semantics can be intertwined with the simplification of the logical form of an utterance. The approach which I propose provides a uniform, HPSG-oriented framework for different levels of linguistic processing, including allomorphy and morphotactics, syntax, semantics, and logical form simplification

    KBGIS-2: A knowledge-based geographic information system

    Get PDF
    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2

    Automatic case acquisition from texts for process-oriented case-based reasoning

    Get PDF
    This paper introduces a method for the automatic acquisition of a rich case representation from free text for process-oriented case-based reasoning. Case engineering is among the most complicated and costly tasks in implementing a case-based reasoning system. This is especially so for process-oriented case-based reasoning, where more expressive case representations are generally used and, in our opinion, actually required for satisfactory case adaptation. In this context, the ability to acquire cases automatically from procedural texts is a major step forward in order to reason on processes. We therefore detail a methodology that makes case acquisition from processes described as free text possible, with special attention given to assembly instruction texts. This methodology extends the techniques we used to extract actions from cooking recipes. We argue that techniques taken from natural language processing are required for this task, and that they give satisfactory results. An evaluation based on our implemented prototype extracting workflows from recipe texts is provided.Comment: Sous presse, publication pr\'evue en 201

    TDL : a type description language for HPSG. - Part 1: Overview

    Get PDF
    Unification-based grammar formalisms have become the predominant paradigm in natural language processing NLP and computational linguistics CL. Their success stems from the fact that they can be seen as high-level declarative programming languages for linguists, which allow them to express linguistic knowledge in a monotonic fashion. More over, such formalisms can be given a precise set theoretical semantics. This paper presents mathcal{TDL}, a typed featurebased language and inference system, which is specically designed to support highly lexicalized grammar theories like HPSG, FUG, or CUG. mathcal{TDL} allows the user to define possibly recursive hierarchically ordered types consisting of type constraints and feature constraints over the boolean connectives wedge, vee, and neg. mathcal{TDL} distinguishes between avm types (open-world reasoning), sort types (closed-world reasoning), built-in types and atoms, and allows the declaration of partitions and incompatible types. Working with partially as well as with fully expanded types is possible, both at definition time and at run time. mathcal{TDL} is incremental, i.e., it allows the redefinition of types and the use of undefined types. Efficient reasoning is accomplished through four specialized reasoners
    corecore