9,341 research outputs found

    Determining application-specific peak power and energy requirements for ultra-low-power processors

    Get PDF
    Many emerging applications such as IoT, wearables, implantables, and sensor networks are power- and energy-constrained. These applications rely on ultra-low-power processors that have rapidly become the most abundant type of processor manufactured today. In the ultra-low-power embedded systems used by these applications, peak power and energy requirements are the primary factors that determine critical system characteristics, such as size, weight, cost, and lifetime. While the power and energy requirements of these systems tend to be application-speci c, conventional techniques for rating peak power and energy cannot accurately bound the power and energy requirements of an application running on a processor, leading to overprovisioning that increases system size and weight. In this thesis, we present an automated technique that performs hardware-software co-analysis of the application and ultra-low-power processor in an embedded system to determine application-speci c peak power and energy requirements.Our technique provides more accurate, tighter bounds than conventional techniques for determining peak power and energy requirements, reporting 15% lower peak power and 17% lower peak energy, on average, than a conventional approach based on pro ling and guardbanding. Compared to an aggressive stressmark-based approach, our technique reports power and energy bounds that are 26% and 26% lower, respectively, on average. Also, unlike conventional approaches, our technique reports guaranteed bounds on peak power and energy independent of an application's input set. Tighter bounds on peak power and energy can be exploited to reduce system size, weight, and cost

    Determining Enclosure Breach Electromagnetically

    Get PDF
    A structure breach may be determined. A sensor, provided in the structure, may be driven with a constant frequency signal. The sensor may comprise a first conductive element and a second conductive element. The first conductive element may be substantially parallel with the second conductive element. A standing wave pattern may be induced on the sensor by the constant frequency signal reflecting off a termination point of the sensor. A least one characteristic of the sensor caused by the voltage standing wave pattern may be measured. A breach occurrence in the structure may be determined when the measured at least one characteristic varies from a previously determined value by a predetermined amount. The first conductive element and the second conductive element may be sandwiched between two layers comprising the structure. The structure may comprise a shipping container floor. The detected breach may comprise an opening greater than nine square inches.Georgia Tech Research Corporatio

    Application-specific Design and Optimization for Ultra-Low-Power Embedded Systems

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2019. Major: Electrical/Computer Engineering. Advisor: John Sartori. 1 computer file (PDF); xii, 101 pages.The last few decades have seen a tremendous amount of innovation in computer system design to the point where electronic devices have become very inexpensive. This has brought us on the verge of a new paradigm in computing where there will be hundreds of devices in a person’s environment, ranging from mobile phones to smart home devices to wearables to implantables, all interconnected. This paradigm, called the Internet of Things (IoT), brings new challenges in terms of power, cost, and security. For example, power and energy have become critical design constraints that not only affect the lifetime of an ultra-low-power (ULP) system, but also its size and weight. While many conventional techniques exist that are aimed at energy reduction or that improve energy efficiency, they do so at the cost of performance. As such, their impact is limited in circumstances where energy is very constrained or where significant degradation of performance or functionality is unacceptable. Focusing on the opposing demands to increase both energy efficiency and performance simultaneously in a world where Moore’s law scaling is decelerating, one of the underlying themes of this work has been to identify novel insights that enable new pathways to energy efficiency in computing systems while avoiding the conventional tradeoff that simply sacrifices performance and functionality for energy efficiency. To this end, this work proposes a method to analyze the behavior of an application on the gate-level netlist of a processor for all possible inputs using a novel symbolic hardware-software co-analysis methdology. Using this methodology several techniques have been proposed to optimize a given processor-application pair for power, area and security

    Dependable design for low-cost ultra-low-power processors

    Get PDF
    Emerging applications in the Internet of Things (IoT) domain, such as wearables, implantables, smart tags, and wireless sensor networks put severe power, cost, reliability, and security constraints on hardware system design. This dissertation focuses on the architecture and design of dependable ultra-low power computing systems. Specifically, it proposes architecture and design techniques that exploit the unique application and usage characteristics of future computing systems to deliver low power, while meeting the reliability and security constraints of these systems. First, this dissertation considers the challenge of achieving both low power and high reliability in SRAM memories. It proposes both an architectural technique to reduce the overheads of error correction and a technique that uses the nature of error correcting codes to allow lower voltage operation without sacrificing reliability. Next, this dissertation considers low power and low cost. By leveraging the fact that many IoT systems are embedded in nature and will run the same application for their entire lifetime, fine-grained usage characteristics of the hardware-software system can be determined at design time. This dissertation presents a novel hardware-software co-analysis based on symbolic simulation that can determine the possible states of the processor throughout any execution of a specific application. This enables power-gating where more gates are turned off for longer, bespoke processors customized to specific applications, and stricter determination of peak power bounds. Finally, this dissertation considers achieving secure IoT systems at low cost and power overhead. By leveraging the hardware-software co-analysis, this dissertation shows that gate-level information flow security guarantees can be provided without hardware overheads

    FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

    Full text link
    Research has shown that convolutional neural networks contain significant redundancy, and high classification accuracy can be obtained even when weights and activations are reduced from floating point to binary values. In this paper, we present FINN, a framework for building fast and flexible FPGA accelerators using a flexible heterogeneous streaming architecture. By utilizing a novel set of optimizations that enable efficient mapping of binarized neural networks to hardware, we implement fully connected, convolutional and pooling layers, with per-layer compute resources being tailored to user-provided throughput requirements. On a ZC706 embedded FPGA platform drawing less than 25 W total system power, we demonstrate up to 12.3 million image classifications per second with 0.31 {\mu}s latency on the MNIST dataset with 95.8% accuracy, and 21906 image classifications per second with 283 {\mu}s latency on the CIFAR-10 and SVHN datasets with respectively 80.1% and 94.9% accuracy. To the best of our knowledge, ours are the fastest classification rates reported to date on these benchmarks.Comment: To appear in the 25th International Symposium on Field-Programmable Gate Arrays, February 201

    Spaceborne memory organization, phase 1 Final report

    Get PDF
    Application of associative memories to data processing for future space vehicle

    A Detailed Analysis of Contemporary ARM and x86 Architectures

    Get PDF
    RISC vs. CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important, and we seek to answer this question through a detailed measurement based study on real hardware running real applications. We analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors? performance and energy efficiency. We find that ARM and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant
    corecore