1,564 research outputs found

    Bounds on the Power of Constant-Depth Quantum Circuits

    Full text link
    We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 is contained in P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo (quant-ph/0205133) to show that, for any family F of quantum gates including Hadamard and CNOT gates, computing the acceptance probabilities of depth-five circuits over F is just as hard as computing these probabilities for circuits over F. In particular, this implies that NQNC^0 = NQACC = NQP = coC=P where NQNC^0 is the constant-depth analog of the class NQP. This essentially refutes a conjecture of Green et al. that NQACC is contained in TC^0 (quant-ph/0106017)

    Oracles and query lower bounds in generalised probabilistic theories

    Get PDF
    We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying three natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle to be well-defined. The three principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), and strong symmetry existence of non-trivial reversible transformations). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, then the corresponding lower bound in theories lying at the kth level of Sorkin's hierarchy is n/k. Hence, lower bounds on the number of queries to a quantum oracle needed to solve certain problems are not optimal in the space of all generalised probabilistic theories, although it is not yet known whether the optimal bounds are achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource beyond that offered by quantum computation.Comment: 17+7 pages. Comments Welcome. Published in special issue "Foundational Aspects of Quantum Information" in Foundations of Physic

    Determining Acceptance Possibility for a Quantum Computation is Hard for PH

    Full text link
    It is shown that determining whether a quantum computation has a non-zero probability of accepting is at least as hard as the polynomial time hierarchy. This hardness result also applies to determining in general whether a given quantum basis state appears with nonzero amplitude in a superposition, or whether a given quantum bit has positive expectation value at the end of a quantum computation
    • …
    corecore