2,362 research outputs found

    Using a Conformal Water Bolus to Adjust Heating Patterns of Microwave Waveguide Applicators

    Get PDF
    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)

    Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study

    Get PDF
    Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically 3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat

    A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes

    Full text link
    A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general-purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity-stress-coupling on co-located computational grids. Using special face interpolation techniques, a semi-implicit stress interpolation correction is proposed to correct the cell-face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry-flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study

    Bubble size distributions and shapes in annular gap bubble column

    Get PDF
    An understanding of the bubble properties, size distributions and shapes is of fundamental importance for comprehending flow dynamics and mass transfer phenomena in bubble column reactors. A large number of studies have focused on open tube bubble columns, and the knowledge concerning bubble columns with internals is still limited. This paper contributes to the existing discussion experimentally investigating a counter-current annular bubble column with 0.24. m inner diameter and two internal pipes. The experimental investigation consists in holdup measurements and image analysis. The former is used for identifying the flow regime transition and studying the bubble column hydrodynamics, whereas the latter is used for investigating the bubble shapes and size distributions. The definition of the transition point is important because the size distribution and bubble shapes depend on the operating conditions and a change of the bubble properties is expected near the transition. The image analysis is applied at different superficial gas and liquid velocities, corresponding to a gas holdup between 2.9% and 9.6%. It is difficult to measure bubble size distribution accurately in large-diameter bubble columns owing to the overlapping of bubbles, even at low void fractions, and-in an annular gap bubble column-the fact that cap bubbles have also been reported in the homogeneous flow regime. The use of a bubble image analysis method to study the bubbly flows in a large-diameter annular gap bubble column is described. In the proposed method, each bubble is approximated and reconstructed using an ellipse. The proposed approach is used to quantify the bubble size distribution, as well as to study the bubble shape and orientation as function of the superficial gas and liquid velocities. The experimental data obtained are used to develop a correlation between non-dimensional parameters and aspect ratios. Also, the experimental data are compared with non-dimensional diagrams from the literature, revealing good agreement. Finally, the image analysis is used for supporting the flow regime transition prediction in the stability analysis method: the virtual mass formulation is obtained by using the aspect ratio correlation provided by the image analysis. The stability analysis-supported by the image analysis-was able to predict the transition point in very good agreement with experimental data and performed better than literature correlations. © 2015 Elsevier Inc

    Cooperative retransmission for wireless regenerative multirelay networks

    Get PDF
    This paper investigates retransmission (RT) mechanisms in wireless regenerative multirelay networks. Conventionally, the RT can be realized in a cooperative manner with the assistance of all available relays. However, this may result in high overall power consumption due to the RT of the same packets across the nodes, particularly when the number of relays is large. We propose a cooperative RT (CR) scheme based on relay cooperation (RC) and binary xor operations to significantly reduce the number of packets retransmitted to produce a more power-efficient system with nonoverlapped RTs. Significantly, we also derive the error probability of RT decisions at the source and relays and show that the proposed CR scheme improves the reliability of the RTs. Furthermore, by deriving the average number of packets to be retransmitted at the source and relays, we not only show that the proposed CR scheme reduces the number of RTs and removes overlapped retransmitted packets but determine the optimized number of relays used for the RT phase as well. Finally, simulation results are presented to demonstrate the validity of the analytical expressions

    zfit: scalable pythonic fitting

    Full text link
    Statistical modeling is a key element in many scientific fields and especially in High-Energy Physics (HEP) analysis. The standard framework to perform this task in HEP is the C++ ROOT/RooFit toolkit; with Python bindings that are only loosely integrated into the scientific Python ecosystem. In this paper, zfit, a new alternative to RooFit written in pure Python, is presented. Most of all, zfit provides a well defined high-level API and workflow for advanced model building and fitting, together with an implementation on top of TensorFlow, allowing a transparent usage of CPUs and GPUs. It is designed to be extendable in a very simple fashion, allowing the usage of cutting-edge developments from the scientific Python ecosystem in a transparent way. The main features of zfit are introduced, and its extension to data analysis, especially in the context of HEP experiments, is discussed.Comment: 12 pages, 2 figure
    corecore