596 research outputs found

    Contributions to nonlinear system modelling and controller synthesis via convex structures

    Full text link
    Esta tesis discute diferentes metodologías de modelado para extraer mejores prestaciones o resultados de estabilidad que aquéllas que el modelado convencional basado en sector no-lineal de sistemas Takagi-Sugeno (también denominados cuasi-LPV) es capaz de producir. En efecto, incluso si las LMIs pueden probar distintas cotas de prestaciones o márgenes de estabilidad (tasa de decaimiento, H\mathcal H_\infty, etc.) para sistemas politópicos, es bien conocido que las prestaciones probadas dependen del modelo elegido y, dado un sistema no-lineal, dicho modelo politópico no es único. Por tanto, se presentan exploraciones hacia cómo obtener el modelo que es menos perjudicial para la medida de prestaciones elegida. Como una última contribución, mejores resultados son obtenidos mediante la extensión del modelado politópico Takagi-Sugeno a un marco de inclusiones en diferencias cuasi-convexas con planificación de ganancia. En efecto, una versión sin planificación de ganancia fue propuesta por un equipo de investigadores de la Universidad de Sevilla (Fiaccini, Álamo, Camacho) para generalizar el modelado politópico, y esta tesis propone una version aún más general de algunos de dichos resultados que incorpora planificación de ganancia.This thesis discusses different modelling methodologies to eke out best performance/stability results than conventional sector-nonlinearity Takagi-Sugeno (also known as quasi-LPV) systems modelling techniques are able to yield. Indeed, even if LMIs can prove various performance and stability bounds (decay rate, H\mathcal H_\infty, etc.) for polytopic systems, it is well known that the proven performance depends on the chosen model and, given a nonlinear dynamic systems, the polytopic embeddings available for it are not unique. Thus, explorations on how to obtain the model which is less deletereous for performance are presented. As a last contribution, extending the polytopic Takagi-Sugeno setup to a gain-scheduled quasi-convex difference inclusion framework allows to improve the results over the polytopic models. Indeed, the non-scheduled convex difference inclusion framework was proposed by a research team in University of Seville (Fiacchini, Alamo, Camacho) as a generalised modelling methodology which included the polytopic one; this thesis poses a further generalised gain-scheduled version of some of these results.Aquesta tesi discuteix diferents metodologies de modelatge per extreure millors prestacions o resultats d'estabilitat que aquelles que el modelatge convencional basat en sector no-lineal de sistemes Takagi-Sugeno (també anomenats quasi-LPV) és capaç de produir. En efecte, fins i tot si les LMIs poden provar diferents cotes de prestacions o marges d'estabilitat (taxa de decaïment, H\mathcal H_\infty, etc.) per a sistemes politòpics, és ben conegut que les prestacions provades depenen del model triat i, donat un sistema no-lineal, el dit model politòpic no és únic. Per tant, es presenten exploracions cap a com obtenir el model que és menys perjudicial per a la mesura de prestacions triada. Com una darrera contribució, millors resultats són obtinguts mitjançant l'extensió del modelatge politòpic Takagi-Sugeno a un marc d'inclusions en diferències quasi-convexes amb planificació de guany. En efecte, una versió sense planificació de guany va ser proposada per un equip d'investigadors de la Universitat de Sevilla (Fiaccini, Álamo, Camacho) per a generalitzar el modelatge politòpic, i aquesta tesi proposa una versió més general d'alguns d'aquests resultats que incorpora planificació de guany.Robles Ruiz, R. (2018). Contributions to nonlinear system modelling and controller synthesis via convex structures [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/100848TESI

    Cooperativity and its use in robust control and state estimation for uncertain dynamic systems with engineering applications

    Get PDF
    This work shows a general applicable approach to robustly control uncertain dynamic systems, where the uncertainty is given by bounded intervals. The presented robust control methods rely on a verified enclosure of the state intervals. Since state-of-the-art-methods to calculate this fail, the property of cooperativity is used. However, since not all systems are naturally cooperative, a transformation routine is established to widen the possible application of this method. Different application scenarios chosen from a variety of engineering fields are used to validate the theoretical findings.Diese Arbeit zeigt einen generell verwendbaren Ansatz, um ein unsicheres dynamisches System robust zu regeln. Der gezeigte Ansatz verwendet dabei verifizierte Intervalleinschlüsse, die sich aus der intervallbasierten Unsicherheit ergeben. Da moderne Rechenmethoden hierbei versagen, wird die Eigenschaft der Kooperativität ausgenutzt, um dies dennoch zu ermöglichen. Da nicht alle Systeme diese Eigenschaft direkt aufweisen, wird eine Transformationsroutine entwickelt, um den gezeigten Ansatz auf andere Einsatzszenarien zu erweitern. Dies wird durch verschiedene Anwendungen in der Arbeit bewiesen

    Efficient method for detection of periodic orbits in chaotic maps and flows

    Full text link
    An algorithm for detecting unstable periodic orbits in chaotic systems [Phys. Rev. E, 60 (1999), pp. 6172-6175] which combines the set of stabilising transformations proposed by Schmelcher and Diakonos [Phys. Rev. Lett., 78 (1997), pp. 4733-4736] with a modified semi-implicit Euler iterative scheme and seeding with periodic orbits of neighbouring periods, has been shown to be highly efficient when applied to low-dimensional system. The difficulty in applying the algorithm to higher dimensional systems is mainly due to the fact that the number of stabilising transformations grows extremely fast with increasing system dimension. In this thesis, we construct stabilising transformations based on the knowledge of the stability matrices of already detected periodic orbits (used as seeds). The advantage of our approach is in a substantial reduction of the number of transformations, which increases the efficiency of the detection algorithm, especially in the case of high-dimensional systems. The performance of the new approach is illustrated by its application to the four-dimensional kicked double rotor map, a six-dimensional system of three coupled H\'enon maps and to the Kuramoto-Sivashinsky system in the weakly turbulent regime.Comment: PhD thesis, 119 pages. Due to restrictions on the size of files uploaded, some of the figures are of rather poor quality. If necessary a quality copy may be obtained (approximately 1MB in pdf) by emailing me at [email protected]

    Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction

    Get PDF
    Matrix Lyapunov and Riccati equations are an important tool in mathematical systems theory. They are the key ingredients in balancing based model order reduction techniques and linear quadratic regulator problems. For small and moderately sized problems these equations are solved by techniques with at least cubic complexity which prohibits their usage in large scale applications. Around the year 2000 solvers for large scale problems have been introduced. The basic idea there is to compute a low rank decomposition of the quadratic and dense solution matrix and in turn reduce the memory and computational complexity of the algorithms. In this thesis efficiency enhancing techniques for the low rank alternating directions implicit iteration based solution of large scale matrix equations are introduced and discussed. Also the applicability in the context of real world systems is demonstrated. The thesis is structured in seven central chapters. After the introduction chapter 2 introduces the basic concepts and notations needed as fundamental tools for the remainder of the thesis. The next chapter then introduces a collection of test examples spanning from easily scalable academic test systems to badly conditioned technical applications which are used to demonstrate the features of the solvers. Chapter four and five describe the basic solvers and the modifications taken to make them applicable to an even larger class of problems. The following two chapters treat the application of the solvers in the context of model order reduction and linear quadratic optimal control of PDEs. The final chapter then presents the extensive numerical testing undertaken with the solvers proposed in the prior chapters. Some conclusions and an appendix complete the thesis

    Chaos to Permanence - Through Control Theory

    Get PDF
    Work by Cushing et al. [18] and Kot et al. [60] demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species [35]. We utilize present chaotic behavior and a control algorithm based on [66, 72] to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from [30], a ratio-dependent one-prey, two-predator model from [35] and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model [67] and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Chaos to Permanence-Through Control Theory

    Get PDF
    Work by Cushing et al. \cite{Cushing} and Kot et al. \cite{Kot} demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species \cite{EVG}. We utilize present chaotic behavior and a control algorithm based on \cite{Vincent97,Vincent2001} to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from \cite{Harvesting}, a ratio-dependent one-prey, two-predator model from \cite{EVG} and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model \cite{Upad} and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Solution of some algebraic problems arising in the theory of stability and sensitivity of systems, with particular reference to the Lyapunov matrix equation

    Get PDF
    The matrix equation A'P + PA = -Q arises when the direct method of Lyapunov is used to analyse the stability of a constant linear system of differential equations ẋ = Ax. Considerable attention is given to the solution of this equation for the symmetric matrix P, given a symmetric positive definite matrix Q. Several new methods are proposed, including a reduction in the number of equations and unknowns brought about by introducing a skew-symmetric matrix; a method based on putting A into Schwarz form and inverting a triangular matrix; and a solution in terms of a convergent infinite matrix series. Some numerical experience is also reported. [Continues.

    Study of numeric Saturation Effects in Linear Digital Compensators

    Get PDF
    Saturation arithmetic is often used in finite precision digital compensators to circumvent instability due to radix overflow. The saturation limits in the digital structure lead to nonlinear behavior during large state transients. It is shown that if all recursive loops in a compensator are interrupted by at least one saturation limit, then there exists a bounded external scaling rule which assures against overflow at all nodes in the structure. Design methods are proposed based on the generalized second method of Lyapunov, which take the internal saturation limits into account to implement a robust dual-mode suboptimal control for bounded input plants. The saturating digital compensator provides linear regulation for small disturbances, and near-time-optimal control for large disturbances or changes in the operating point. Computer aided design tools are developed to facilitate the analysis and design of this class of digital compensators
    corecore