1,448 research outputs found

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Measurement-Based Monitoring and Control in Power Systems with High Renewable Penetrations

    Get PDF
    Power systems are experiencing rapid changes in their generation mixes because of the increasing integration of inverter-based resources (IBRs) and the retirement of traditional generations. This opens opportunities for a cleaner energy outlook but also poses challenges to the safe operation of the power networks. Enhanced monitoring and control based on the increasingly available measurements are essential in assisting stable operation and effective planning for these evolving systems. First, awareness of the evolving dynamic characteristics is quintessential for secure operation and corrective planning. A quantified monitoring study that keeps track of the inertial response and primary frequency response is conducted on the Eastern Interconnection (EI) for the past decade with field data. Whereas the inertia declined by at least 10%, the primary frequency response experienced an unexpected increase. The findings unveiled in the trending analysis also led to an improved event MW size estimation method, as well as discussions about regional dynamics. Experiencing a faster and deeper renewable integration, the Continental Europe Synchronous Area (CESA) system has been threatened by more frequent occurrences of inter-area oscillations during light-load high-renewable periods. A measurement-based oscillation damping control scheme is proposed for CESA with reduced reliance on system models. The design, implementation, and hardware-in-the-loop (HIL) testing of the controller are discussed in detail. Despite the challenges, the increasing presence of IBRs also brings opportunities for fast and efficient controls. Together with synchronized measurement, IBRs have the potential to flexibly complement traditional frequency and voltage control schemes for improved frequency and voltage recovery. The design, implementation, and HIL testing of the measurement-based frequency and voltage control for the New York State Grid are presented. In addition to the transmission level development, IBRs deployed in distribution networks can also be valuable assets in emergency islanding situations if controlled properly. A power management module is proposed to take advantage of measurements and automatically control the electric boundaries of islanded microgrids for maximized power utilization and improved frequency regulation. The module is designed to be adaptive to arbitrary non-meshed topologies with multiple source locations for increased flexibility, expedited deployment, and reduced cost

    Adaptive and Robust Cross-Voltage-Level Power Flow Control of Active Distribution Networks

    Full text link
    The large-scale integration of Distributed Energy Resources (DERs) into the electric power system offers new opportunities to ensure stability. For example, Active Distribution Networks (ADNs) can be used in (sub-)transmission systems in the emergency state, as far as high robustness and performance of the ADN control are guaranteed. This paper presents an adaptive control system for ADN's cross-voltage-level power flow control. For this purpose, the gain scheduling approach is used. Furthermore, this work introduces a method for control parameter tuning. In order to validate the control parameter tuning, the adaptive control system is analyzed regarding robustness and performance using an exemplary medium voltage grid. In addition, the influence of uncertainties is examined. Finally, the operation of the adaptive control system is demonstrated by performing time-domain simulations.Comment: In proceedings of the 11th Bulk Power Systems Dynamics and Control Symposium (IREP 2022), July 25-30, 2022, Banff, Canad

    Modern Power System Dynamic Performance Improvement through Big Data Analysis

    Get PDF
    Higher penetration of Renewable Energy (RE) is causing generation uncertainty and reduction of system inertia for the modern power system. This phenomenon brings more challenges on the power system dynamic behavior, especially the frequency oscillation and excursion, voltage and transient stability problems. This dissertation work extracts the most useful information from the power system features and improves the system dynamic behavior by big data analysis through three aspects: inertia distribution estimation, actuator placement, and operational studies.First of all, a pioneer work for finding the physical location of COI in the system and creating accurate and useful inertia distribution map is presented. Theoretical proof and dynamic simulation validation have been provided to support the proposed method for inertia distribution estimation based on measurement PMU data. Estimation results are obtained for a radial system, a meshed system, IEEE 39 bus-test system, the Chilean system, and a real utility system in the US. Then, this work provided two control actuator placement strategy using measurement data samples and machine learning algorithms. The first strategy is for the system with single oscillation mode. Control actuators should be placed at the bus that are far away from the COI bus. This rule increased damping ratio of eamples systems up to 14\% and hugely reduced the computational complexity from the simulation results of the Chilean system. The second rule is created for system with multiple dynamic problems. General and effective guidance for planners is obtained for IEEE 39-bus system and IEEE 118-bus system using machine learning algorithms by finding the relationship between system most significant features and system dynamic performance. Lastly, it studied the real-time voltage security assessment and key link identification in cascading failure analysis. A proposed deep-learning framework has Achieved the highest accuracy and lower computational time for real-time security analysis. In addition, key links are identified through distance matrix calculation and probability tree generation using 400,000 data samples from the Western Electricity Coordinating Council (WECC) system

    A Criterion for Designing Emergency Control Schemes to Counteract Communication Failures in Wide-Area Damping Control

    Get PDF
    © The Authors 2023. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/Communication failures and transmission delays are two major issues associated with Wide-Area Damping Controllers (WADCs). While transmission delays have been extensively studied and various solutions have been proposed, little research has been done on communication failures and most of the proposed methods are based on preventive controls. However, in today’s liberalized electricity markets, preventive controls are no longer acceptable and the trend is to use emergency controls instead. This paper proposes a novel emergency control scheme to counteract the loss of remote signals related to the input and to the output of the WADC (i.e. sensor and actuator failures). The proposed scheme is based on a simple criterion, which overcomes the complexity of the previous methods. Modal analysis and time domain simulations are performed to verify the performance of the proposed method. The simulation results show that the proposed method performs well in handling communication failures and can maintain good damping performance. This research work is particularly important in view of the trend towards the wide-scale adoption of wide-area measurement technologies, while the vulnerability to cyber-attacks is increasing.Peer reviewe

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics
    • …
    corecore