34,820 research outputs found

    Kinetics of the reactions of the acid anhydrides with aromatic amines in aprotic solvents

    Get PDF
    Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages

    Generic Schemes for Single Molecule Kinetics 2: Information Content of the Poisson Indicator

    Full text link
    Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms

    Kinetics of the low-temperature pyrolysis of polyethene, polypropene and polystyrene modeling, experimental determination and comparison with literature models and data

    Get PDF
    The pyrolysis kinetics of low-density polyethylene, high-density polyethylene, polypropylene, and polystyrene has been studied at temperatures below 450 C. In addition, a literature review on the low-temperature pyrolysis of these polymers has been conducted and has revealed that the scatter in the reported kinetic data is significant, which is most probably due to the use of simple first-order kinetic models to interpret the experimental data. This model type is only applicable in a small conversion range, but was used by many authors over a much wider conversion range. In this investigation the pyrolysis kinetics of the forementioned polymers and a mixture of polymers has been studied at temperatures below 450 C by performing isothermal thermogravimetric analysis (TGA) experiments. The TGA experimental data was used to determine the kinetic parameters on the basis of a simple first-order model for high conversions (70-90%) and a model developed in the present study, termed the random chain dissociation (RCD) model, for the entire conversion range. The influence of important parameters, such as molecular weight, extent of branching and -scission on the pyrolysis kinetics was studied with the RCD model. This model was also used to calculate the primary product spectrum of the pyrolysis process. The effect of the extent of branching and the initial molecular weight on the pyrolysis process was also studied experimentally. The effect of the extent of branching was found to be quite significant, but the effect of the initial molecular weight was minor. These results were found to agree quite well with the predictions obtained from the RCD model. Finally, the behavior of mixtures of the aforementioned polymers was studied and it was found that the pyrolysis kinetics of the polymers in the mixture remains unaltered in comparison with the pyrolysis kinetics of the pure polymers

    In Situ Study of the Photodegradation of Carbofuran Deposited on TiO\u3csub\u3e2\u3c/sub\u3e Film under UV Light, Using ATR-FTIR Coupled to HS-MCR-ALS

    Get PDF
    The in situ study of the photodegradation of carbofuran deposited on a TiO2 catalyst film under UV light was carried out using the ATR-FTIR technique. The data were analyzed using a Hard–Soft Multivariate Curve Resolution-Alternating Least Squares (HS-MCR-ALS) methodology. Using S-MCR-ALS, four factors were deduced from the evolving factor analysis of the data, and their concentrations and spectra were determined. These results were used to draw qualitative and quantitative analyses of the major products of carbofuran photodegradation. The results of this analysis were in good agreement with GC-MS results and with reported mechanisms. Hard-MCR-ALS was then used to refine the spectra and concentrations, using a multistep kinetic model. The rate constant for the first step in the photodegradation of carbofuran was found to be 2.9 × 10–3 min–1. The higher magnitude of the correlation (96.87%), the explained variance (99.87%) and LOF (3.01), are good indicators of the reliability of the outcome of this approach. This method has been shown to be an efficient approach to study in situ photodegradation of pesticides on a solid surface

    Influence of reaction products on the selective oxidation of ethene

    Get PDF
    The kinetics of the selective oxidation of ethene in air over an industrial silver on ¿-alumina catalyst were studied. Special attention was paid to the influence of the reaction products on the reaction rates of epoxidation and complete combustion. Kinetic data were obtained in two different types of internal recycle reactor and in a cooled tubular reactor, and were fitted separately to several reaction rate expressions based on different kinetic models. A Langmuir-Hinshelwood mechanism, in which adsorbed ethene reacts with adsorbed molecular oxygen, was chosen as the best kinetic model. The reaction products compete for adsorption on the active sites and reduce the rates of both reactions. Carbon dioxide enhances the selectivity towards ethene oxide, whereas water has almost no influence on the selectivity. The fitting of the three individual data sets obtained in the three reactors results in accurate, but different, reaction rate expressions, whereas the fitting of the three data sets simultaneously results in less accurate reaction rate expressions. The systematic deviations found may be explained, to some extent, by differences in the operating regimes in each reactor. The main reason for the deviations is probably the different catalyst activities in the three reactors caused by poisoning. The effect of the addition of products to the feed on the behaviour of the cooled tubular reactor can be described reasonably well by a mathematical model in which the kinetic equations obtained in the laboratory reactors are incorporated. The results of these simulations are sensitive to the kinetics used

    Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors

    Get PDF
    Transesterification reaction of vegetable oil with ethanol leads to ethyl esters, used to date for applications principally in food and cosmetic industry. To open the application field to biofuels (to substitute current fuels resulting from fossil resources), the process efficiency has to be developed to be economically profitable. In this work, the sunflower oil ethanolysis was performed in a micro-scaled continuous device, inducing better control for heat and mass transfer in comparison with batch processes. Moreover, this device ensures kinetic data acquisition at the first seconds of the reaction, which was not feasible in a conventional batch process. These data were used to model occurring phenomena and to determine kinetic constants and mass transfer coefficients. A single set of these parameters is able to represent the evolution of the reaction media composition function of time for five ethanol to oil molar ratios (6.0, 9.0, 16.2, 22.7 and 45.4). The model was validated in reaction and diffusion mode. Finally, it was subsequently used to simulate reactions with other operational conditions and to propose other process implementation

    Real-time dynamics of clusters. III. I_2Ne_n (n=2–4), picosecond fragmentation, and evaporation

    Get PDF
    In this paper (III) we report real-time studies of the picosecond dynamics of iodine in Ne clusters I*2Nen(n = 2–4) --> I*2 + nNe. The results are discussed in relation to vibrational predissociation (VP), basic to the I2X systems, and to the onset of intramolecular vibrational-energy redistribution (IVR). The latter process, which is a precursor for the evaporation of the host atoms or for further fragmentation, is found to be increasingly effective as the cluster size increases; low-energy van der Waals modes act as the accepting (bath) modes. The reaction dynamics for I2Ne2 are examined and quantitatively compared to a simple model which describes the dynamics as consecutive bond breaking. On this basis, it is concluded that the onset of energy redistribution is observed in I2Ne2. Comparison of I2Ne and I2Ne2 to larger clusters (n=3,4) is accomplished by introducing an overall effective reaction rate. From measurements of the rates and their dependence on v[script ']i, the initial quantum number of the I2 stretch, we are able to examine the dynamics of direct fragmentation and evaporation, and compare with theory

    RNA packaging motor: From structure to quantum mechanical modelling and sequential-stochastic mechanism

    Get PDF
    The bacteriophages of the Cystoviridae family package their single stranded RNA genomic precursors into empty capsid (procapsids) using a hexameric packaging ATPase motor (P4). This molecular motor shares sequence and structural similarity with RecA-like hexameric helicases. A concerted structural, mutational and kinetic analysis helped to define the mechanical reaction coordinate, i.e. the conformational changes associated with RNA translocation. The results also allowed us to propose a possible scheme of coupling between ATP hydrolysis and translocation which requires the cooperative action of three consecutive subunits. Here, we first test this model by preparing hexamers with defined proportions of wild type and mutant subunits and measuring their activity. Then, we develop a stochastic kinetic model which accounts for the catalytic cooperativity of the P4 hexamer. Finally, we use the available structural information to construct a quantum-chemical model of the chemical reaction coordinate and obtain a detailed description of the electron density changes during ATP hydrolysis. The model explains the results of the mutational analyses and yields new insights into the role of several conserved residues within the ATP binding pocket. These hypotheses will guide future experimental work

    The determination of drug stability by HPLC assay of degradation products.

    Get PDF
    This work evaluates the advantages in drug stability testing of following the decomposition by analysis of decomposition products. Conventional methods of drug stability testing are criticised and the limitations are shown to be largely a result of analysing for un-decomposed drug. Using simulated analytical results incorporating various levels of precision, the use of product concentration is shown to be capable of producing conventional rate constants in shorter times, by utilising smaller extents of reaction than use of intact drug analysis. The simulation is applied to single, parallel, consecutive and reversible reactions. The findings of the simulated decompositions are supported by practical decomposition studies on several drugs. HPLC with ultraviolet detection is used as a single analytical method for both reactant and product. Aspirin and diiodoaspirin represent single-decomposition product systems; tetracycline is examined as a drug decomposition involving parallel, consecutive and reversible reactions. Nafimidone is studied to establish the advantages and limitations of product and reactant measurements, where all decomposition products have not been identified. The oxidation of 5-hydroxymethylfurfural is also examined to determine the usefulness of product analysis in limit testing and in establishing reaction pathways. In all cases where product identity is known, it is shown that the initial rate method employing product concentrations provides more rapid determination of rate constants. It is suggested that reaction order is overemphasized in shelf-life determination of drugs and that the initial rate method with analysis of product can minimise - and in certain cases, eliminate - the need for temperature stressing to determine shelf-life. HPLC is shown to be very generally applicable in product measurement. New criteria for stability-indicating assays that allow use of the initial rate method are demonstrated for the above drugs, and for succinylsulphathiazole, diphenhydramine and chloramphenicol. The separations obtained are described in terms of current ion pairing ideas
    corecore