144 research outputs found

    Estimation of Forest Biomass and Faraday Rotation using Ultra High Frequency Synthetic Aperture Radar

    Get PDF
    Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were analysed. The data were collected on several occasions with different moisture conditions during the spring of 2007. Regression models for biomass estimation on stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% of the mean biomass. For P-band (centre frequency 340 MHz), regression models including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. Little or no saturation effects were observed up to 290 t/ha for P-band. A model based on physical-optics has been developed and was used to predict HH-polarized SAR data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing on an undulating ground surface. The model shows that ground topography is a critical issue in SAR imaging for these frequencies. A regression model for biomass estimation which includes a correction for ground slope was developed using multi-polarized P-band SAR data from Remningstorp as well as from the boreal test site Krycklan in northern Sweden. The latter test site has pronounced topographic variability. It was shown that the model was able to partly compensate for moisture variability, and that the model gave an rmse of 22-33% when trained using data from Krycklan and evaluated using data from Remningstorp. Regression modelling based on P-band backscatter was also used to estimate biomass change using data acquired in Remningstorp during the spring 2007 and during the fall 2010. The results show that biomass change can be measured with an rmse of about 15% or 20 tons/ha. This suggests that not only deforestation, but also forest growth and degradation (e.g. thinning) can be measured using P-band SAR data. The thesis also includes result on Faraday rotation, which is an ionospheric effect which can have a significant impact on spaceborne UHF-band SAR images. Faraday rotation angles are estimated in spaceborne L-band SAR data. Estimates based on distributed targets and calibration targets with high signal to clutter ratios are found to be in very good agreement. Moreover, a strong correlation with independent measurements of Total Electron Content is found, further validating the estimates

    Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets

    Get PDF
    This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the “biomass impenetrability”, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation – usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a “forest-to-be”. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    International program for Earth observations

    Get PDF
    During the 1990 summer session of the International Space University, graduate students of many different countries and with various academic backgrounds carried out a design project that focused on how to meet the most pressing environmental information requirements of the 1990's. The International Program for Earth Observations (IPEO) is the result of the students labor. The IPEO report examines the legal and institutional, scientific, engineering and systems, financial and economic, and market development approaches needed to improve international earth observations and information systems to deal with environmental issues of global importance. The IPEO scenario is based on the production of a group of lightweight satellites to be used in global remote sensing programs. The design and function of the satellite is described in detail

    Ocean surface wave measurements using SAR wave mode data

    Get PDF
    Over the ocean, the SAR and ASAR instruments onboard ESA’s ERS and ENVISAT satellites are operated in wave mode whenever no other operation is requested. In wave mode, SAR collects data to form small images of 10 km x 5 km size every 200 or 100 km along the satellite’s orbit. Ocean wave parameters can be retrieved from these SAR/ASAR wave mode data over the global ocean with high quality. The wave parameters can be used for validation of numerical wave model forecasts and hindcasts, assimilation of models, observations and forecast of extreme ocean weather, as well as for global wave climate analysis. The main focus of the thesis is ocean wave information retrieval from SAR and ASAR wave mode data. This includes validation of published schemes for retrieving two-dimensional ocean wave spectra and development of the new empirical algorithm CWAVE_ENV for the retrieval of integral wave parameters directly from ASAR wave mode data without using other input as the first guess. Three months of ASAR wave mode data acquired globally from December 2006 to February 2007 are used to validate the algorithms of the nonlinear PARSA (Partition Rescaling and Shift Algorithm) and the quasi-linear WVW (used by ESA for Level 2 ASAR Wave Mode Wave Spectra) by comparing them to collocated in situ buoy measurements and numerical wave model results. The PARSA algorithm needs the SAR look cross spectra and first guess spectra from numerical wave model as input. The algorithm can yield the full two-dimensional ocean wave spectrum and the retrieved integral wave parameters agree with buoy measurements with a bias of only 0.09 m and a scatter index of 21%. The comparison with the forecast wave model of DWD is even better with a bias of -0.01 m and a scatter index of 16%. The quasi-linear ESA algorithm WVW has the advantage of not needing any priori. However, the retrieved wave spectra are limited to the domain of long wavelengths, mainly swell. Therefore the significant wave height (SWH) integrated from the WVW spectra has a higher bias of -0.19 m and a larger scatter index of 36% when compared to in situ buoy measurements. Furthermore, the underestimation of SWH increases with sea state. Around 25% ASAR wave mode cross spectra cannot be converted successfully by using the algorithm, probably because of the low signal to noise ratio. Based on the empirical algorithm CWAVE_ERS developed for reprocessed ERS-2 SAR wave mode data, the CWAVE_ENV algorithm is proposed in this thesis and implemented for the ASAR wave mode data. Using the same three months ASAR wave mode data and the collocated dataset, the empirical algorithm is validated. Validation, particularly compared to independent datasets, i.e., in situ buoy measurements and radar altimeters, proves that reliable and accurate sea state measurements can be achieved. The bias is only 0.06 m and the scatter index 24%, compared to the buoy measurements over deep water. The respective bias is -0.11 m and -0.13 m and the scatter index 13% and 17% when compared to the crossover measurements of the spaceborne radar altimeters on GFO and JASON, respectively. For a full year dataset, from June 2006 to May 2007, ASAR wave mode data were processed using the CWAVE_ENV algorithm leading to a global sea state analysis. Global 10-year returned extreme SWH is estimated to be 23.4 m using a lognormal probability density function (pdf) as the best fit for high sea state. Seasonal and annual maps for SWH, mean wave period, and wave steepness are compiled. In the winter season, the fetch-limit effects of the North Atlantic lead to high wave build up continuously from west to east, causing the gradual growth of swell. Compared to the results of reanalyzed wave model ERA-40 during 1971 - 2000, the annual mean wave height derived from ASAR wave mode data shows a similar pattern of high waves in the North Pacific, North Atlantic and the Southern Hemisphere. However, in the Northwestern Indian, a much stronger monsoon signal is observed in the ASAR results than the model results. With respect to the mean wave period, extreme swell is observed in the open sea south of Australia, which is around 1 s higher than the model results for the mean value. The SAR wave mode data are useful for global wave studies, while in the coastal regions, SAR data with higher resolution as well as larger coverage are required for investigating spatial changes of sea state. Wave refraction and diffraction around the Terceira island (located in the North Atlantic) is analyzed using the new high resolution TerraSAR-X data. Variations of wave height, peak wavelength and wave direction in the coastal wave processes are identified using the two-dimensional SAR image spectra

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    Proceedings of the Third Spaceborne Imaging Radar Symposium

    Get PDF
    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986

    Sentinel-1 data exploitation for terrain deformation monitoring

    Get PDF
    Persistent Scatterer interferometry (PSI) is a group of advanced differential interferometric Synthetic Aperture Radar (SAR) techniques used to measure and monitor terrain deformation. Sentinel-1 has improved the data acquisition throughout and, compared to previous sensors, increased considerably the Differential Interferometric SAR (DInSAR) and PSI deformation monitoring potential. The effect of the refractive atmosphere on the interferometric phase and phase unwrapping ambiguity are two critical issues of InSAR. The low density of Persistent Scatterer (PS) in non-urban areas, another critical issue, has inspired the development of alternative approaches and refinement of the PS chains. Along with the efforts to develop methods to mitigate the three above-mentioned problems, the work presented in this thesis also deals with the presence of a new signal in multilooked interferograms which cannot be explained by noise, atmospheric or earth surface topography changes. This paper describes a method for atmospheric phase screen estimation using rain station weather data and three different data driven procedures to obtain terrain deformation maps. These approaches aim to exploit Sentinel-1 highly coherent interferograms and their short revisit time. The first method called the splitting makes uses of the power spectrum of the interferograms to split the signals into high and low frequency, and following a mutually exclusive consecutive processing chain for the two sets. This approach has resulted in greater density of PSs with decreased phase unwrapping errors. The second approach, called Direct Integration (DI), aims at providing a very fast and straightforward approach to screen wide areas and easily detect active areas. This approach fully exploits the coherent interferograms from the consecutive images provided by Sentinel-1 resulting in a very high sampling density. However, it lacks robustness and its usability lays on the operator experience. The third method, called PSIG (Persistent Scatterer Interferometry Geomatics) short temporal baseline, provides a constrained application of the PSIG chain, the CTTC approach to the PSI. It uses short temporal baseline interferograms and do not assume any deformation model for point selection. It is also quite a straightforward approach and a perfect complement to the direct integration approach. It improves the performances of the standard PSIG approach, increasing the PS density and providing robust measurements. The effectiveness of the approaches is illustrated through analyses performed on different test sites.La técnica Persistent Scatterer Interferometry (PSI) es un grupo de técnicas avanzadas de radar de apertura sintética interferométrica diferencial (SAR) que se utiliza para medir y monitorear losmovimientos del terreno. Sentinel-1 ha mejorado sensiblemente la adquisición de datos y, en comparación con los sensores SAR anteriores, ha aumentado considerablemente el potencial uso de la interferometría diferencial SAR y del PSI para medir y monitorizar desplazamientos del terreno. El efecto de la atmósfera sobre la fase interferométrica y la naturaleza ambigua de esta son dos cuestiones críticas de InSAR. Además, la baja densidad de Persistent Scatterer (PSs) en áreas no urbanas, es otro tema crítico que ha inspirado el desarrollo de enfoques alternativos y el refinamiento de las cadenas PS existentes. Junto con los esfuerzos por desarrollar métodos para mitigar los tres problemas antes mencionados, el trabajo presentado en esta tesis también aborda la presencia de una nueva señal en interferogramas multilooked que no puede explicarse por cambios de ruido, atmosféricos o topográficos de la superficie terrestre. Esta tesis describe un método para la estimación de la fase atmosférica utilizando datos meteorológicos adquiridos in-situ y tres aproximaciones diferentes basadas en datos Sentinel-1 para obtener mapas de deformación del terreno. Estos enfoques tienen como objetivo explotar los interferogramas altamente coherentes proporcionados por Sentinel-1 gracias a su corto tiempo de revisita. El primer método llamado división hace uso de filtros en el dominico frecuencial de los interferogramas para dividir las señales en alta y baja frecuencia, y siguiendo una cadena de procesamiento consecutiva independiente para cada clase. Este enfoque ha dado como resultado una mejora substancial de PS minimizando los errores debidos al desenrollado de fase. El segundo enfoque, llamado Integración Directa (DI), tiene como objetivo proporcionar un enfoque muy rápido y sencillo para examinar áreas amplias y detectar fácilmente áreas activas. Este enfoque aprovecha al máximo los interferogramas coherentes de las imágenes consecutivas proporcionadas por Sentinel-1, lo que da como resultado una densidad de muestreo muy alta. Sin embargo, carece de robustez y su usabilidad depende de la experiencia del operador. El tercer método, llamado PSIG (Persistent Scatterer Interferometry Geomatics) de línea de base temporal corta, proporciona una aplicación restringida de la cadena PSIG, el enfoque CTTC para el PSI. Utiliza interferogramas de línea base temporales cortos y no asume ningún modelo de deformación para la selección de puntos. Su uso es complementario al enfoque de integración directa proporcionando robustez en las zonas. Mejora el rendimiento del enfoque estándar de PSIG, aumentando la densidad de PS y proporcionando mediciones robustas. La efectividad de los enfoques se ilustra a través de análisis realizados en diferentes sitios de prueba.Postprint (published version
    corecore