206,674 research outputs found

    Determination of the levitation limits of dust particles within the sheath in complex plasma experiments

    Get PDF
    Experiments are performed in which dust particles are levitated at varying heights above the powered electrode in a RF plasma discharge by changing the discharge power. The trajectories of particles dropped from the top of the discharge chamber are used to reconstruct the vertical electric force acting on the particles. The resulting data, together with the results from a selfconsistent fluid model, are used to determine the lower levitation limit for dust particles in the discharge and the approximate height above the lower electrode where quasineutrality is attained, locating the sheath edge. These results are then compared with current sheath models. It is also shown that particles levitated within a few electron Debye lengths of the sheath edge are located outside the linearly increasing portion of the electric field

    Independent analysis of the orbits of Pioneer 10 and 11

    Full text link
    Independently developed orbit determination software is used to analyze the orbits of Pioneer 10 and 11 using Doppler data. The analysis takes into account the gravitational fields of the Sun and planets using the latest JPL ephemerides, accurate station locations, signal propagation delays (e.g., the Shapiro delay, atmospheric effects), the spacecrafts' spin, and maneuvers. New to this analysis is the ability to utilize telemetry data for spin, maneuvers, and other on-board systematic effects. Using data that was analyzed in prior JPL studies, the anomalous acceleration of the two spacecraft is confirmed. We are also able to put limits on any secondary acceleration (i.e., jerk) terms. The tools that were developed will be used in the upcoming analysis of recently recovered Pioneer 10 and 11 Doppler data files.Comment: 22 pages, 5 figures; accepted for publication in IJMP

    Importance of including small body spin effects in the modelling of extreme and intermediate mass-ratio inspirals

    Full text link
    We explore the ability of future low-frequency gravitational wave detectors to measure the spin of stellar mass and intermediate mass black holes that inspiral onto super-massive Kerr black holes (SMBHs). We develop a kludge waveform model based on the equations of motion derived by Saijo et al. [Phys Rev D 58, 064005, 1998] for spinning BH binaries, augmented with spin-orbit and spin-spin couplings taken from perturbative and post-Newtonian (PN) calculations, and the associated conservative self-force corrections, derived by comparison to PN results. We model the inspiral phase using accurate fluxes which include perturbative corrections for the spin of the inspiralling body, spin-spin couplings and higher-order fits to solutions of the Teukolsky equation. We present results of Monte Carlo simulations of parameter estimation errors and of the model errors that arise when we omit conservative corrections from the waveform template. For a source 5000+10^6 solar mass observed with an SNR of 1000, LISA will be able to determine the two masses to within a fractional error of ~0.001, measure the SMBH spin magnitude, q, and the spin magnitude of the inspiralling BH to 0.0001, 10%, respectively, and determine the location of the source in the sky and the SMBH spin orientation to within 0.0001 steradians. For a 10+10^6 solar mass system observed with SNR of 30, LISA will not be able to determine the spin magnitude of the inspiralling BH, although the measurement of the other waveform parameters is not significantly degraded by the presence of spin. The model errors which arise from ignoring conservative corrections become significant for mass-ratios above 0.0001, but including these corrections up to 2PN order may be sufficient to reduce these systematic errors to an acceptable level.Comment: 24 pages, 11 figures. v2 mirrors published version in PRD. Edits in Sections V and VI in response to comments from refere

    Identification of nonlinear vibrating structures: Part I -- Formulation

    Get PDF
    A self-starting multistage, time-domain procedure is presented for the identification of nonlinear, multi-degree-of-freedom systems undergoing free oscillations or subjected to arbitrary direct force excitations and/or nonuniform support motions. Recursive least-squares parameter estimation methods combined with nonparametric identification techniques are used to represent, with sufficient accuracy, the identified system in a form that allows the convenient prediction of its transient response under excitations that differ from the test signals. The utility of this procedure is demonstrated in a companion paper

    Molecular Dynamics in Hydrogen‐bonded Interactions: A Preliminary Experimentally Determined Harmonic Stretching Force Field for HCN‐‐‐HF

    Get PDF
    Observation of the 2ν1 overtone band in the hydrogen‐bonded complex HCN‐‐‐HF permits evaluation of the anharmonicity constant X 1 1=−116.9(1) cm− 1 and determination of the anharmonicity corrected fundamental frequency ω1. This information, and available data from previous rovibrational analyses in the common and perdeuterated isotopic species of HCN‐‐‐HF, offer an opportunity for calculation of an approximate stretching harmonic force field. With the assumptions f 1 2=f 2 4=0.0, the remaining force constants (in mdyn/Å) are evaluated as: f 1 1=8.600(20), f 2 2=6.228(9), f 3 3=19.115(40), f 4 4=0.2413(39), f 1 3=0.000(13), f 1 4=0.0343(2), f 2 3=−0.211(6), f 3 4=0.000(2). These compare to f 1 1=9.658(2) in the HF monomer and f 1 1=6.244(3) and f 3 3=18.707(16) in the HCN monomer. These results provide the information necessary to quantitatively assess the applicability of the Cummings and Wood approximation in this hydrogen‐bonded complex and also give an estimate of D e j , the equilibrium distortion constant in the harmonic limit. Comparisons of these experimentally determined parameters with the predictions of a b i n i t i o molecular orbital calculations at several levels of approximation are presented

    A Measurement of Newton's Gravitational Constant

    Get PDF
    A precision measurement of the gravitational constant GG has been made using a beam balance. Special attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance and the zero-point variation of the balance. The equipment, the measurements and the analysis are described in detail. The value obtained for G is 6.674252(109)(54) 10^{-11} m3 kg-1 s-2. The relative statistical and systematic uncertainties of this result are 16.3 10^{-6} and 8.1 10^{-6}, respectively.Comment: 26 pages, 20 figures, Accepted for publication by Phys. Rev.

    "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    Get PDF
    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these kludges to be of such high quality (despite their ease of calculation) that it is possible they may play some role in the final search of LISA data for EMRIs.Comment: 29 pages, 11 figures, requires subeqnarray; v2 contains minor changes for consistency with published versio

    The added mass coefficient of a dispersion of spherical gas bubbles in liquid

    Get PDF
    Models published in the two-phase flow literature for the added mass coefficient of a dilute bubbly dispersion are discussed and compared. It is shown that the differences between the models are mainly due to the different ways in which the added mass is defined. Also, approximate expressions for the added mass coefficient of non-dilute bubbly dispersions are given. Finally, the use of the models in an equation for the average motion of the bubbles is briefly discussed
    corecore