721 research outputs found

    Cable Driven Robot to Simulate Low Gravity and Its Applications in Underwater Humanoid Robots

    Get PDF
    [Abstract] This paper addresses the main results obtained during the design and analysis of a cable-driven robot able to simulate the dynamic conditions existing in underwater environment. This work includes the kinematic and dynamic modeling as well as the analysis of the tension of the cables along different trajectories. The low-gravity simulator application is novel in the context of cable-driven robots and it is aimed to be implemented in an underwater humanoid robot. Therefore, this work can be seen as a test case of the complementary research contributions of the group of Robotics and Intelligent Machines at CAR in the recent years.The research leading to these results has received funding from the Spanish Government CICYT project Ref. DPI2014-57220-C2-1-P, DPI2013-49527-EXP, the Universidad Politécnica de Madrid project Ref. AL14-PID-15, and the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EUUniversidad Politécnica de Madrid; AL14-PID-15Comunidad de Madrid; S2013/MIT-2748https://doi.org/10.17979/spudc.978849749808

    Design Issues and Application of Cable-Based Parallel Manipulators for Rehabilitation Therapy

    Get PDF
    In this study, cable-based manipulators are proposed for application in rehabilitation therapies. Cable-based manipulators show good features that are very useful when the system has to interact with humans. In particular, they can be used to aid motion or as monitoring/training systems in rehabilitation therapies. Modelling and simulation of both active and passive cable-based parallel manipulators are presented for an application to help older people, patients or disabled people in the sit-to-stand transfer and as a monitoring/training system. Experimental results are presented by using built prototypes

    Computing wrench-feasible paths for cable-driven hexapods

    Get PDF
    Motion paths of cable-driven hexapods must carefully be planned to ensure that the lengths and tensions of all cables remain within acceptable limits, for a given wrench applied to the platform. The cables cannot go slack -to keep the control of the robot- nor excessively tight -to prevent cable breakage- even in the presence of bounded perturbations of the wrench. This paper proposes a path planning method that accommodates such constraints simultaneously. Given two configurations of the robot, the method attempts to connect them through a path that, at any point, allows the cables to counteract any wrench lying in a predefined uncertainty region. The feasible C-space is placed in correspondence with a smooth manifold, which facilitates the definition of a continuation strategy to search this space systematically from one configuration, until the second configuration is found, or path non-existence is proved at the resolution of the search. The force Jacobian is full rank everywhere on the C-space, which implies that the computed paths will naturally avoid crossing the forward singularity locus of the robot. The adjustment of tension limits, moreover, allows to maintain a meaningful clearance relative to such locus. The approach is applicable to compute paths subject to geometric constraints on the platform pose, or to synthesize free-flying motions in the full six-dimensional C-space. Experiments are included that illustrate the performance of the method in a real prototype.Postprint (published version
    corecore