1,157 research outputs found

    Combined electronic nose and tongue for a flavour sensing system

    Get PDF
    We present a novel, smart sensing system developed for the flavour analysis of liquids. The system comprises both a so-called "electronic tongue" based on shear horizontal surface acoustic wave (SH-SAW) sensors analysing the liquid phase and a so-called "electronic nose" based on chemFET sensors analysing the gaseous phase. Flavour is generally understood to be the overall experience from the combination of oral and nasal stimulation and is principally derived from a combination of the human senses of taste (gustation) and smell (olfaction). Thus, by combining two types of microsensors, an artificial flavour sensing system has been developed. Initial tests conducted with different liquid samples, i.e. water, orange juice and milk (of different fat content), resulted in 100% discrimination using principal components analysis; although it was found that there was little contribution from the electronic nose. Therefore further flavour experiments were designed to demonstrate the potential of the combined electronic nose/tongue flavour system. Consequently, experiments were conducted on low vapour pressure taste-biased solutions and high vapour pressure, smell-biased solutions. Only the combined flavour analysis system could achieve 100% discrimination between all the different liquids. We believe that this is the first report of a SAW-based analysis system that determines flavour through the combination of both liquid and headspace analysis

    Analyses of odours from concentrated animal feeding operations: a review

    Get PDF
    Concentrated Animal Feeding Operations (CAFOs) are widely present all over the world due to the high population demand for food and products of animal origin. However, they have generated several environmental concerns, including odour nuisance, which affects people health and quality of life. Odours from livestock are a very complex mixtures of molecules and their analytical investigation is highly demanding. Many works have been published regarding the study of odours from CAFOs, using different techniques and technologies to face the issue. Thus, the aim of this review paper is to summarize all the ways to study odours from CAFOs, starting from the sampling methods and then treating in general the principles of Dynamic Olfactometry, Gas Chromatography coupled with Mass Spectrometry and Electronic Noses. Finally, a deep literature summary of Gas Chromatography coupled with Mass Spectrometry and Electronic Noses applied to odours coming from poultry, dairy and swine feeding operations is reported. This work aims to make some order in this field and it wants to help future researchers to deal with this environmental problem, constituting a state-of-the-art in this field

    Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system

    Get PDF
    Conventionally, odours emitted by different sources present in wastewater treatment plants (WWTPs) are measured by dynamic olfactometry, where a human panel sniffs and analyzes air bags collected from the plant. Although the method is considered the gold standard, the process is costly, slow, and infrequent, which does not allow operators to quickly identify and respond to problems. To better monitor and map WWTP odour emissions, here we propose a small rotary-wing drone equipped with a lightweight (1.3-kg) electronic nose. The "sniffing drone" sucks in air via a ten-meter (33-foot) tube and delivers it to a sensor chamber where it is analyzed in real-time by an array of 21 gas sensors. From the sensor signals, machine learning (ML) algorithms predict the odour concentration that a human panel using the EN13725 methodology would report. To calibrate and validate the predictive models, the drone also carries a remotely controlled sampling device (compliant with EN13725:2022) to collect sample air in bags for post-flight dynamic olfactometry. The feasibility of the proposed system is assessed in a WWTP in Spain through several measurement campaigns covering diverse operating regimes of the plant and meteorological conditions. We demonstrate that training the ML algorithms with dynamic (transient) sensor signals measured in flight conditions leads to better performance than the traditional approach of using steady-state signals measured in the lab via controlled exposures to odour bags. The comparison of the electronic nose predictions with dynamic olfactometry measurements indicates a negligible bias between the two measurement techniques and 95 % limits of agreement within a factor of four. This apparently large disagreement, partly caused by the high uncertainty of olfactometric measurements (typically a factor of two), is more than offset by the immediacy of the predictions and the practical advantages of using a drone-based system

    Modern Applications of Electronic Nose: A Review

    Get PDF
    Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of some of the more important and modern applications that have been of greatest benefit to the humankind.DOI:http://dx.doi.org/10.11591/ijece.v3i1.122

    Odour Detection Methods: Olfactometry and Chemical Sensors

    Get PDF
    The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc.) and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality); this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants) as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses) are then described, focusing on their better performances for environmental analysis. Odour emission monitoring carried out through both the techniques is finally reviewed in order to show the complementary responses of human and instrumental sensing

    Soil and soil breathing remote monitoring: A short review

    Get PDF
    The efficiency of agricultural use of soils depends directly on their quality indicators, which include an extended set of characteristics: from data of the environmental situation to the component composition of the soil air. Therefore, for a more complete survey of agricultural land in order to determine their qualitative indicators and subsequent application, it is necessary to carry out comprehensive monitoring while simultaneously studying the characteristics of soils and their air composition. The article is devoted to the literature analysis on the remote monitoring of soils and soil air. Particular attention was paid to the relationship between soil type and soil air composition and it was found that the soil air composition (in the combination with pH and humidity parameters) can assess the type, quality and environmental condition of soils. Since when developing a remote monitoring system of soil air soil moisture and soil structure significantly affect the processes occurring in soils, and ultimately the quantitative composition of soil air, it is very important to know the dependence of the soil air composition on the type and quality of the soil itself, the influence of moisture, structure and other parameters on it. It was shown that the use of sensors is a promising direction for the development of the soils and soil air remote monitoring. It was indicated that soil and soil air remote monitoring in real time will provide reliable, timely information on the environmental status of soils and their quality. Commercial sensors that can be used to determine CO2, O2, NOx, CH4, CO, H2 and NH3 were considered and the technique for sensor signal processing was chosen. A remote monitoring system with the use of existing commercial sensors was proposed, the movement of which can be realized with the help of quadcopter, which will allow parallel scanning of the soils and the land terrain. Such a system will make it possible to correctly assess the readiness of soils for planting, determine their intended use, correctly apply fertilizers, and even predict the yield of certain crops. Thereby, this approach will create a modern on-line system for full monitoring of soil, land and rapid response in the case of its change for the agro-industrial sector

    Electronic noses for environmental monitoring applications

    Get PDF
    Electronic nose applications in environmental monitoring are nowadays of great interest, because of the instruments’ proven capability of recognizing and discriminating between a variety of different gases and odors using just a small number of sensors. Such applications in the environmental field include analysis of parameters relating to environmental quality, process control, and verification of efficiency of odor control systems. This article reviews the findings of recent scientific studies in this field, with particular focus on the abovementioned applications. In general, these studies prove that electronic noses are mostly suitable for the different applications reported, especially if the instruments are specifically developed and fine-tuned. As a general rule, literature studies also discuss the critical aspects connected with the different possible uses, as well as research regarding the development of effective solutions. However, currently the main limit to the diffusion of electronic noses as environmental monitoring tools is their complexity and the lack of specific regulation for their standardization, as their use entails a large number of degrees of freedom, regarding for instance the training and the data processing procedures

    Applications and Advances in Electronic-Nose Technologies

    Get PDF
    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man
    • 

    corecore