3,430 research outputs found

    MODIS: Moderate-resolution imaging spectrometer. Earth observing system, volume 2B

    Get PDF
    The Moderate-Resolution Imaging Spectrometer (MODIS), as presently conceived, is a system of two imaging spectroradiometer components designed for the widest possible applicability to research tasks that require long-term (5 to 10 years), low-resolution (52 channels between 0.4 and 12.0 micrometers) data sets. The system described is preliminary and subject to scientific and technological review and modification, and it is anticipated that both will occur prior to selection of a final system configuration; however, the basic concept outlined is likely to remain unchanged

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    The semianalytical cloud retrieval algorithm for SCIAMACHY I. The validation

    Get PDF
    A recently developed cloud retrieval algorithm for the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is briefly presented and validated using independent and well tested cloud retrieval techniques based on the look-up-table approach for MODeration resolutIon Spectrometer (MODIS) data. The results of the cloud top height retrievals using measurements in the oxygen A-band by an airborne crossed Czerny-Turner spectrograph and the Global Ozone Monitoring Experiment (GOME) instrument are compared with those obtained from airborne dual photography and retrievals using data from Along Track Scanning Radiometer (ATSR-2), respectively

    Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    Get PDF
    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry

    Studies of global cloud field using measurements of GOME, SCIAMACHY and GOME-2

    Get PDF
    Tropospheric clouds are main players in the Earth climate system. Characterization of long-term global and regional cloud properties aims to support trace-gases retrieval, radiative budget assessment, and analysis of interactions with particles in the atmosphere. The information needed for the determination of cloud properties can be optimally obtained with satellite remote sensing systems. This is because the amount of reflected solar light depends both on macro- and micro-physical characteristics of clouds. At the time of writing, the spaceborne nadir-viewing Global Ozone Monitoring Experiment (GOME), together with the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and GOME-2, make available a unique record of almost 17 years (June 1996 throughout May 2012) of global top-of-atmosphere (TOA) reflectances and form the observational basis of this work. They probe the atmosphere in the ultraviolet, visible and infrared regions of the electromagnetic spectrum. Specifically, in order to infer cloud properties such as optical thickness (COT), spherical albedo (CA), cloud base (CBH) and cloud top (CTH) height, TOA reflectances have been selected inside and around the strong absorption band of molecular oxygen in the wavelength range at 758-772 nm (the O2 A-band). The retrieval is accomplished using the Semi-Analytical CloUd Retrieval Algorithm (SACURA). The physical framework relies on the asymptotic parameterizations of radiative transfer. The generated record has been throughly verified against synthetic datasets as function of cloud and surface parameters, sensing geometries, and instrumental specifications and validated against ground-based retrievals. The error budget analysis shows that SACURA retrieves CTH with an average accuracy of ±400 m, COT within ±20% (given that COT > 5) and places CTH closer to ground-based radar-derived CTH, as compared to independent satellite-based retrievals. In the considered time period the global average CTH is 5.2±3.0 km, for a corresponding average COT of 20.5±16.1 and CA of 0.62±0.11. Using linear least-squares techniques, global trend in deseasonalized CTH has been found to be -1.78±2.14 m * year-1 in the latitude belt ±60°, with diverging tendency over land ( 0.27±3.2 m * year-1) and water (-2.51±2.8 m * year-1) masses. The El Nino-Southern Oscillation (ENSO), observed through CTH and cloud fraction (CF) values over the Pacific Ocean, pulls clouds to lower altitudes. It is argued that ENSO must be removed for trend analysis. The global ENSO-cleaned trend in CTH amounts to -0.49±2.22 m * year-1. At a global scale, no explicit patterns of statistically significant trends (at 95% confidence level, estimated with bootstrap resampling technique) have been found, which are representative of peculiar natural climate variability. One exception is the Sahara region, which exhibits the strongest upward trend in CTH, sustained by an increasing trend in water vapor. Indeed, the representativeness of every trend is affected by the record length under study. 17 years of cloud data still might not be enough to provide any decisive answer to current open questions involving clouds. The algorithm used in this work can be applied to measurements provided by future planned Earth's observation missions. In this way, the existing cloud record will be extended and attribution of cloud property changes to natural or human causes and assessment of cloud feedback sign within the climate system can be investigated

    Performance specifications for a meteorological satellite lidar Final report

    Get PDF
    Cirrus cloud cover observation capability and performance specifications for meteorological satellite lida

    WCRP surface radiation budget shortwave data product description, version 1.1

    Get PDF
    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures

    Meteorological satellites

    Get PDF
    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's

    SOFOS - A new Satellite-based Operational Fog Observation Scheme

    Get PDF
    This thesis introduces a new technique for the operational observation of fog from space. The scheme presented uses the Meteosat-8 SEVIRI system for near-real-time detection of low stratus and ground fog areas
    corecore