209 research outputs found

    Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece

    Get PDF
    We present first retrievals of the Lidar-Radiometer Inversion Code (LIRIC), applied on combined lidar and sunphotometer data during a Saharan dust episode over Athens, Greece, on July 20, 2011. A full lidar dataset in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm was acquired from the European Aerosol Research Network (EARLINET) station of Athens and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the concentration and extinction coefficient profiles of dust. The lidar measurements showed a free tropospheric layer between 1-5 km above Athens, with low Ångström exponent of ~0.5 and high particle depolarization ratio, ~25-30%, both values characteristic of dust particles. The application of LIRIC revealed high concentration profiles of non-spherical coarse particles in the layer, in the range of 0.04-0.07 ppb and a smaller fine particle component with concentrations of ~0.01 ppb. The extinction coefficients at 532 nm ranged between 50 and 90 Mm-1 for coarse non-spherical particles and between 25 and 50Mm-1 for fine particles. The retrievals were compared with modeled dust concentration and extinction coefficient profiles from the Dust Regional Atmospheric Modeling (BSC-DREAM8b), showing good agreement, especially for the coarse modePostprint (published version

    An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    Get PDF
    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv)

    EARLINET observations of the 14-22-May long-range dust transport event during SAMUM 2006: Validation of results from dust transport modelling

    Get PDF
    We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Ångstr¨om exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dust plume with a dust transport model. The model results and the experimental data show similar times regarding the appearance of the dust plume over each EARLINET site. Dust optical depth from the model agrees in most cases to particle optical depth measured with the Sun photometers. The vertical distribution of the mineral dust could be satisfactorily reproduced, if we use as benchmark the extinction profiles measured with lidar. In some cases we find differences. We assume that insufficient vertical resolution of the dust plume in the model calculations is one reason for these deviations

    Lidar intercomparisons on algorithm and system level in the frame of EARLINET.

    Get PDF
    EARLINET (European Aerosol Research Lidar Network to Establish an Aerosol Climatology) is a joint project of 19 lidar groups operating aerosol lidar systems at 21 stations over a large part of Europe, plus one group focussing on mathematical problems associated with the retrieval of aerosol properties from lidar observations. The main goal of EARLINET is to establish a comprehensive statistically representative data set of the aerosol vertical distribution. For this purpose, each lidar group performs vertical aerosol soundings on a routine basis three times a week on preselected days and times. Additionally several special measurements (e.g. on Saharan dust, temporal cycles, rural and urban differences, long and medium range transport) are part of the project.Peer ReviewedPostprint (published version

    Comparison of Scanning LiDAR with Other Remote Sensing Measurements and Transport Model Predictions for a Saharan Dust Case

    Get PDF
    The evolution and the properties of a Saharan dust plume were studied near the city of Karlsruhe in southwest Germany (8.4298°E, 49.0953°N) from 7 to 9 April 2018, combining a scanning LiDAR (90°, 30°), a vertically pointing LiDAR (90°), a sun photometer, and the transport model ICON-ART. Based on this Saharan dust case, we discuss the advantages of a scanning aerosol LiDAR and validate a method to determine LiDAR ratios independently. The LiDAR measurements at 355 nm showed that the dust particles had backscatter coefficients of 0.86 ± 0.14 Mm−1^{-1} sr−1^{-1}, extinction coefficients of 40 ± 0.8 Mm−1^{-1}, a LiDAR ratio of 46 ± 5 sr, and a linear particle depolarisation ratio of 0.27 ± 0.023. These values are in good agreement with those obtained in previous studies of Saharan dust plumes in Western Europe. Compared to the remote sensing measurements, the transport model predicted the plume arrival time, its layer height, and its structure quite well. The comparison of dust plume backscatter values from the ICON-ART model and observations for two days showed a correlation with a slope of 0.9 ± 0.1 at 355 nm. This work will be useful for future studies to characterise aerosol particles employing scanning LiDARs

    Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties

    Get PDF
    Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355 nm) greater than 5 Mm−1 sr−1 and close to 300 Mm−1, respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2 μm, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles.This work was supported by FCT (Fundação para a Ciência e a Tecnologia) through the National Re-equipment Program under REDE/1527/RNG/2007, through the project PTDC/CTEATM/65307/2006 and through the projects PTDC/AAC-CLI/104925/2008 and PTDC/GEO-MET/4222/2012. The authors also acknowledge the funding provided by the Évora Geophysics Centre, Portugal, under the contract with FCT (the Portuguese Science and Technology Foundation), PEst-OE/CTE/UI0078/2011. Sérgio Nepomuceno Pereira and Jana Preißler were funded by FCT with Grants SFRH/BPD/81132/2011 and SFRH/BD/47521/2008, respectively. CGE benefits from the membership in SPALINET, EARLINET, and ACTRIS. ACTRIS Research Infrastructure Project is supported by the European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement (no. 262254). This work was also supported by the Andalusia Regional Government through the project P10-RNM-6299
    • …
    corecore