6,447 research outputs found

    Cancellous bone and theropod dinosaur locomotion. Part II—a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates

    Get PDF
    This paper is the second of a three-part series that investigates the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and therefore has the potential to provide insight into locomotor biomechanics in extinct tetrapod vertebrates such as dinosaurs. Here in Part II, a new biomechanical modelling approach is outlined, one which mechanistically links cancellous bone architectural patterns with three-dimensional musculoskeletal and finite element modelling of the hindlimb. In particular, the architecture of cancellous bone is used to derive a single ‘characteristic posture’ for a given species—one in which bone continuum-level principal stresses best align with cancellous bone fabric—and thereby clarify hindlimb locomotor biomechanics. The quasi-static approach was validated for an extant theropod, the chicken, and is shown to provide a good estimate of limb posture at around mid-stance. It also provides reasonable predictions of bone loading mechanics, especially for the proximal hindlimb, and also provides a broadly accurate assessment of muscle recruitment insofar as limb stabilization is concerned. In addition to being useful for better understanding locomotor biomechanics in extant species, the approach hence provides a new avenue by which to analyse, test and refine palaeobiomechanical hypotheses, not just for extinct theropods, but potentially many other extinct tetrapod groups as well

    Estado actual de la técnica y cuestiones perdurables en la recogida de datos antropométricos

    Get PDF
    The study of human body size and shape has been a topic of research for a very long time. In the past, anthropometry used traditional measuring techniques to record the dimensions of the human body and reported variance in body dimensions as a function of mean and standard deviation. Nowadays, the study of human body dimensions can be carried out more efficiently using three-dimensional body scanners, which can provide large amounts of anthropometric data more quickly than traditional techniques can. This paper presents a description of the broad range of issues related to the collection of anthropometric data using three-dimensional body scanners, including the different types of technologies available and their implications, the standard scanning process needed for effective data collection, and the possible sources of measurement errors that might affect the reliability and validity of the data collected.El estudio del tamaño y la forma del cuerpo humano ha sido un tema de investigación durante un tiempo muy largo. En el pasado, la antropometría utilizó técnicas de medición tradicionales para registrar las dimensiones del cuerpo humano y reportó la variación en las dimensiones del cuerpo en función de la media y la desviación estándar. Hoy en día, el estudio de las dimensiones del cuerpo humano se puede llevar a cabo utilizando maneras más eficientes, como los escáneres tridimensionales del cuerpo, que pueden proporcionar grandes cantidades de datos antropométricos más rápidamente que las técnicas tradicionales. En este trabajo se presenta una descripción de la amplia gama de temas relacionados con la recogida de datos antropométricos utilizando escáneres tridimensionales del cuerpo, incluyendo los diferentes tipos de tecnologías disponibles y sus implicaciones, el proceso de digitalización estándar necesario para la captura efectiva de datos, y las posibles fuentes de los errores de medición que podrán afectar la fiabilidad y validez de los datos recogidos.This work is financed by FEDER funds through the Competitive Factors Operational Program (COMPETE) POCI-01-0145-FEDER-007043 and POCI-01-0145FEDER-007136 and by national funds through FCT – the Portuguese Foundation for Science and Technology, under the projects UID/CEC/00319/2013 and UID/CTM/00264 respectively

    Key-Pose Prediction in Cyclic Human Motion

    Get PDF
    In this paper we study the problem of estimating innercyclic time intervals within repetitive motion sequences of top-class swimmers in a swimming channel. Interval limits are given by temporal occurrences of key-poses, i.e. distinctive postures of the body. A key-pose is defined by means of only one or two specific features of the complete posture. It is often difficult to detect such subtle features directly. We therefore propose the following method: Given that we observe the swimmer from the side, we build a pictorial structure of poselets to robustly identify random support poses within the regular motion of a swimmer. We formulate a maximum likelihood model which predicts a key-pose given the occurrences of multiple support poses within one stroke. The maximum likelihood can be extended with prior knowledge about the temporal location of a key-pose in order to improve the prediction recall. We experimentally show that our models reliably and robustly detect key-poses with a high precision and that their performance can be improved by extending the framework with additional camera views.Comment: Accepted at WACV 2015, 8 pages, 3 figure

    CGAMES'2009

    Get PDF
    • …
    corecore