126 research outputs found

    Diversity in Machine Learning

    Full text link
    Machine learning methods have achieved good performance and been widely applied in various real-world applications. They can learn the model adaptively and be better fit for special requirements of different tasks. Generally, a good machine learning system is composed of plentiful training data, a good model training process, and an accurate inference. Many factors can affect the performance of the machine learning process, among which the diversity of the machine learning process is an important one. The diversity can help each procedure to guarantee a total good machine learning: diversity of the training data ensures that the training data can provide more discriminative information for the model, diversity of the learned model (diversity in parameters of each model or diversity among different base models) makes each parameter/model capture unique or complement information and the diversity in inference can provide multiple choices each of which corresponds to a specific plausible local optimal result. Even though the diversity plays an important role in machine learning process, there is no systematical analysis of the diversification in machine learning system. In this paper, we systematically summarize the methods to make data diversification, model diversification, and inference diversification in the machine learning process, respectively. In addition, the typical applications where the diversity technology improved the machine learning performance have been surveyed, including the remote sensing imaging tasks, machine translation, camera relocalization, image segmentation, object detection, topic modeling, and others. Finally, we discuss some challenges of the diversity technology in machine learning and point out some directions in future work.Comment: Accepted by IEEE Acces

    Fast determinantal point processes via distortion-free intermediate sampling

    Full text link
    Given a fixed n×dn\times d matrix X\mathbf{X}, where ndn\gg d, we study the complexity of sampling from a distribution over all subsets of rows where the probability of a subset is proportional to the squared volume of the parallelepiped spanned by the rows (a.k.a. a determinantal point process). In this task, it is important to minimize the preprocessing cost of the procedure (performed once) as well as the sampling cost (performed repeatedly). To that end, we propose a new determinantal point process algorithm which has the following two properties, both of which are novel: (1) a preprocessing step which runs in time O(number-of-non-zeros(X)logn)+poly(d)O(\text{number-of-non-zeros}(\mathbf{X})\cdot\log n)+\text{poly}(d), and (2) a sampling step which runs in poly(d)\text{poly}(d) time, independent of the number of rows nn. We achieve this by introducing a new regularized determinantal point process (R-DPP), which serves as an intermediate distribution in the sampling procedure by reducing the number of rows from nn to poly(d)\text{poly}(d). Crucially, this intermediate distribution does not distort the probabilities of the target sample. Our key novelty in defining the R-DPP is the use of a Poisson random variable for controlling the probabilities of different subset sizes, leading to new determinantal formulas such as the normalization constant for this distribution. Our algorithm has applications in many diverse areas where determinantal point processes have been used, such as machine learning, stochastic optimization, data summarization and low-rank matrix reconstruction

    Diversifying Sparsity Using Variational Determinantal Point Processes

    Full text link
    We propose a novel diverse feature selection method based on determinantal point processes (DPPs). Our model enables one to flexibly define diversity based on the covariance of features (similar to orthogonal matching pursuit) or alternatively based on side information. We introduce our approach in the context of Bayesian sparse regression, employing a DPP as a variational approximation to the true spike and slab posterior distribution. We subsequently show how this variational DPP approximation generalizes and extends mean-field approximation, and can be learned efficiently by exploiting the fast sampling properties of DPPs. Our motivating application comes from bioinformatics, where we aim to identify a diverse set of genes whose expression profiles predict a tumor type where the diversity is defined with respect to a gene-gene interaction network. We also explore an application in spatial statistics. In both cases, we demonstrate that the proposed method yields significantly more diverse feature sets than classic sparse methods, without compromising accuracy.Comment: 9 pages, 3 figure

    Determinantal Point Processes Implicitly Regularize Semi-parametric Regression Problems

    Full text link
    Semi-parametric regression models are used in several applications which require comprehensibility without sacrificing accuracy. Typical examples are spline interpolation in geophysics, or non-linear time series problems, where the system includes a linear and non-linear component. We discuss here the use of a finite Determinantal Point Process (DPP) for approximating semi-parametric models. Recently, Barthelm\'e, Tremblay, Usevich, and Amblard introduced a novel representation of some finite DPPs. These authors formulated extended L-ensembles that can conveniently represent partial-projection DPPs and suggest their use for optimal interpolation. With the help of this formalism, we derive a key identity illustrating the implicit regularization effect of determinantal sampling for semi-parametric regression and interpolation. Also, a novel projected Nystr\"om approximation is defined and used to derive a bound on the expected risk for the corresponding approximation of semi-parametric regression. This work naturally extends similar results obtained for kernel ridge regression.Comment: 26 pages. Extended results. Typos correcte

    Dissimilarity-based Sparse Subset Selection

    Full text link
    Finding an informative subset of a large collection of data points or models is at the center of many problems in computer vision, recommender systems, bio/health informatics as well as image and natural language processing. Given pairwise dissimilarities between the elements of a `source set' and a `target set,' we consider the problem of finding a subset of the source set, called representatives or exemplars, that can efficiently describe the target set. We formulate the problem as a row-sparsity regularized trace minimization problem. Since the proposed formulation is, in general, NP-hard, we consider a convex relaxation. The solution of our optimization finds representatives and the assignment of each element of the target set to each representative, hence, obtaining a clustering. We analyze the solution of our proposed optimization as a function of the regularization parameter. We show that when the two sets jointly partition into multiple groups, our algorithm finds representatives from all groups and reveals clustering of the sets. In addition, we show that the proposed framework can effectively deal with outliers. Our algorithm works with arbitrary dissimilarities, which can be asymmetric or violate the triangle inequality. To efficiently implement our algorithm, we consider an Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. We show that the ADMM implementation allows to parallelize the algorithm, hence further reducing the computational time. Finally, by experiments on real-world datasets, we show that our proposed algorithm improves the state of the art on the two problems of scene categorization using representative images and time-series modeling and segmentation using representative~models

    Determinantal Point Processes in Randomized Numerical Linear Algebra

    Full text link
    Randomized Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc. Determinantal Point Processes (DPPs), a seemingly unrelated topic in pure and applied mathematics, is a class of stochastic point processes with probability distribution characterized by sub-determinants of a kernel matrix. Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms that are of interest to both areas. We provide an overview of this exciting new line of research, including brief introductions to RandNLA and DPPs, as well as applications of DPPs to classical linear algebra tasks such as least squares regression, low-rank approximation and the Nystr\"om method. For example, random sampling with a DPP leads to new kinds of unbiased estimators for least squares, enabling more refined statistical and inferential understanding of these algorithms; a DPP is, in some sense, an optimal randomized algorithm for the Nystr\"om method; and a RandNLA technique called leverage score sampling can be derived as the marginal distribution of a DPP. We also discuss recent algorithmic developments, illustrating that, while not quite as efficient as standard RandNLA techniques, DPP-based algorithms are only moderately more expensive

    Towards Bursting Filter Bubble via Contextual Risks and Uncertainties

    Full text link
    A rising topic in computational journalism is how to enhance the diversity in news served to subscribers to foster exploration behavior in news reading. Despite the success of preference learning in personalized news recommendation, their over-exploitation causes filter bubble that isolates readers from opposing viewpoints and hurts long-term user experiences with lack of serendipity. Since news providers can recommend neither opposite nor diversified opinions if unpopularity of these articles is surely predicted, they can only bet on the articles whose forecasts of click-through rate involve high variability (risks) or high estimation errors (uncertainties). We propose a novel Bayesian model of uncertainty-aware scoring and ranking for news articles. The Bayesian binary classifier models probability of success (defined as a news click) as a Beta-distributed random variable conditional on a vector of the context (user features, article features, and other contextual features). The posterior of the contextual coefficients can be computed efficiently using a low-rank version of Laplace's method via thin Singular Value Decomposition. Efficiencies in personalized targeting of exceptional articles, which are chosen by each subscriber in test period, are evaluated on real-world news datasets. The proposed estimator slightly outperformed existing training and scoring algorithms, in terms of efficiency in identifying successful outliers.Comment: The filter bubble problem; Uncertainty-aware scoring; Empirical-Bayes method; Low-rank Laplace's metho

    On the Generalization Error Bounds of Neural Networks under Diversity-Inducing Mutual Angular Regularization

    Full text link
    Recently diversity-inducing regularization methods for latent variable models (LVMs), which encourage the components in LVMs to be diverse, have been studied to address several issues involved in latent variable modeling: (1) how to capture long-tail patterns underlying data; (2) how to reduce model complexity without sacrificing expressivity; (3) how to improve the interpretability of learned patterns. While the effectiveness of diversity-inducing regularizers such as the mutual angular regularizer has been demonstrated empirically, a rigorous theoretical analysis of them is still missing. In this paper, we aim to bridge this gap and analyze how the mutual angular regularizer (MAR) affects the generalization performance of supervised LVMs. We use neural network (NN) as a model instance to carry out the study and the analysis shows that increasing the diversity of hidden units in NN would reduce estimation error and increase approximation error. In addition to theoretical analysis, we also present empirical study which demonstrates that the MAR can greatly improve the performance of NN and the empirical observations are in accordance with the theoretical analysis

    Repulsive Mixture Models of Exponential Family PCA for Clustering

    Full text link
    The mixture extension of exponential family principal component analysis (EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA does. For example, due to the linearity of EPCA's essential form, nonlinear cluster structures cannot be easily handled, but they are explicitly modeled by the mixing extensions. However, the traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering. To alleviate this problem, in this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework. Specifically, a determinantal point process (DPP) is exploited as a diversity-encouraging prior distribution over the joint local EPCAs. As required, a matrix-valued measure for L-ensemble kernel is designed, within which, 1\ell_1 constraints are imposed to facilitate selecting effective PCs of local EPCAs, and angular based similarity measure are proposed. An efficient variational EM algorithm is derived to perform parameter learning and hidden variable inference. Experimental results on both synthetic and real-world datasets confirm the effectiveness of the proposed method in terms of model parsimony and generalization ability on unseen test data

    Latent Variable Modeling with Diversity-Inducing Mutual Angular Regularization

    Full text link
    Latent Variable Models (LVMs) are a large family of machine learning models providing a principled and effective way to extract underlying patterns, structure and knowledge from observed data. Due to the dramatic growth of volume and complexity of data, several new challenges have emerged and cannot be effectively addressed by existing LVMs: (1) How to capture long-tail patterns that carry crucial information when the popularity of patterns is distributed in a power-law fashion? (2) How to reduce model complexity and computational cost without compromising the modeling power of LVMs? (3) How to improve the interpretability and reduce the redundancy of discovered patterns? To addresses the three challenges discussed above, we develop a novel regularization technique for LVMs, which controls the geometry of the latent space during learning to enable the learned latent components of LVMs to be diverse in the sense that they are favored to be mutually different from each other, to accomplish long-tail coverage, low redundancy, and better interpretability. We propose a mutual angular regularizer (MAR) to encourage the components in LVMs to have larger mutual angles. The MAR is non-convex and non-smooth, entailing great challenges for optimization. To cope with this issue, we derive a smooth lower bound of the MAR and optimize the lower bound instead. We show that the monotonicity of the lower bound is closely aligned with the MAR to qualify the lower bound as a desirable surrogate of the MAR. Using neural network (NN) as an instance, we analyze how the MAR affects the generalization performance of NN. On two popular latent variable models --- restricted Boltzmann machine and distance metric learning, we demonstrate that MAR can effectively capture long-tail patterns, reduce model complexity without sacrificing expressivity and improve interpretability
    corecore