487 research outputs found

    Factorization theorems for classical group characters, with applications to alternating sign matrices and plane partitions

    Get PDF
    We show that, for a certain class of partitions and an even number of variables of which half are reciprocals of the other half, Schur polynomials can be factorized into products of odd and even orthogonal characters. We also obtain related factorizations involving sums of two Schur polynomials, and certain odd-sized sets of variables. Our results generalize the factorization identities proved by Ciucu and Krattenthaler (Advances in combinatorial mathematics, 39-59, 2009) for partitions of rectangular shape. We observe that if, in some of the results, the partitions are taken to have rectangular or double-staircase shapes and all of the variables are set to 1, then factorization identities for numbers of certain plane partitions, alternating sign matrices and related combinatorial objects are obtained.Comment: 22 pages; v2: minor changes, published versio

    Multiply-refined enumeration of alternating sign matrices

    Get PDF
    Four natural boundary statistics and two natural bulk statistics are considered for alternating sign matrices (ASMs). Specifically, these statistics are the positions of the 1's in the first and last rows and columns of an ASM, and the numbers of generalized inversions and -1's in an ASM. Previously-known and related results for the exact enumeration of ASMs with prescribed values of some of these statistics are discussed in detail. A quadratic relation which recursively determines the generating function associated with all six statistics is then obtained. This relation also leads to various new identities satisfied by generating functions associated with fewer than six of the statistics. The derivation of the relation involves combining the Desnanot-Jacobi determinant identity with the Izergin-Korepin formula for the partition function of the six-vertex model with domain-wall boundary conditions.Comment: 62 pages; v3 slightly updated relative to published versio

    A doubly-refined enumeration of alternating sign matrices and descending plane partitions

    Get PDF
    It was shown recently by the authors that, for any n, there is equality between the distributions of certain triplets of statistics on nxn alternating sign matrices (ASMs) and descending plane partitions (DPPs) with each part at most n. The statistics for an ASM A are the number of generalized inversions in A, the number of -1's in A and the number of 0's to the left of the 1 in the first row of A, and the respective statistics for a DPP D are the number of nonspecial parts in D, the number of special parts in D and the number of n's in D. Here, the result is generalized to include a fourth statistic for each type of object, where this is the number of 0's to the right of the 1 in the last row of an ASM, and the number of (n-1)'s plus the number of rows of length n-1 in a DPP. This generalization is proved using the known equality of the three-statistic generating functions, together with relations which express each four-statistic generating function in terms of its three-statistic counterpart. These relations are obtained by applying the Desnanot-Jacobi identity to determinantal expressions for the generating functions, where the determinants arise from standard methods involving the six-vertex model with domain-wall boundary conditions for ASMs, and nonintersecting lattice paths for DPPs.Comment: 28 pages; v2: published versio

    A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux

    Full text link
    Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We present a unifying perspective on ASMs and other combinatorial objects by studying a certain tetrahedral poset and its subposets. We prove the order ideals of these subposets are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self-complementary plane partitions (TSSCPPs), staircase shaped semistandard Young tableaux, Catalan objects, tournaments, and totally symmetric plane partitions. We prove product formulas counting these order ideals and give the rank generating function of some of the corresponding lattices of order ideals. We also prove an expansion of the tournament generating function as a sum over TSSCPPs. This result is analogous to a result of Robbins and Rumsey expanding the tournament generating function as a sum over alternating sign matrices.Comment: 24 pages, 23 figures, full published version of arXiv:0905.449
    corecore