2,233 research outputs found

    Developing an Agent Based Heuristic Optimisation System for Complex Flow Shops with Customer-Imposed Production Disruptions

    Get PDF
    The study of complex manufacturing flow-shops has seen a number of approaches and frameworks proposed to tackle various production-associated problems. However, unpredictable disruptions, such as change in sequence of order, order cancellation and change in production delivery due time, imposed by customers on flow-shops that impact production processes and inventory control call for a more adaptive approach capable of responding to these changes. In this research work, a new adaptive framework and agent-based heuristic optimization system was developed to investigate the disruption consequences and recovery strategy. A case study using an Original Equipment Manufacturer (OEM) production process of automotive parts and components was adopted to justify the proposed system. The results of the experiment revealed significant improvement in terms of total number of late orders, order delivery time, number of setups and resources utilization, which provide useful information for manufacturer’s decision-making policies.

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Production Scheduling Requirements to Smart Manufacturing

    Get PDF
    The production scheduling has attracted a lot of researchers for many years, however most of the approaches are not targeted to deal with real manufacturing environments, and those that are, are very particular for the case study. It is crucial to consider important features related with the factories, such as products and machines characteristics and unexpected disturbances, but also information such as when the parts arrive to the factory and when should be delivered. So, the purpose of this paper is to identify some important characteristics that have been considered independently in a lot of studies and that should be considered together to develop a generic scheduling framework to be used in a real manufacturing environment.authorsversionpublishe

    Approaches of production planning and control under Industry 4.0: A literature review

    Get PDF
    Purpose: Industry 4.0 technologies significantly impact how production is planned, scheduled, and controlled. Literature provides different classifications of the tasks and functions of production planning and control (PPC) like the German Aachen PPC model. This research aims to identify and classify current Industry 4.0 approaches for planning and controlling production processes and to reveal researched and unexplored areas of the model. It extends a reduced version that has been published previously in Procedia Computer Science (Herrmann, Tackenberg, Padoano & Gamber, 2021) by presenting and discussing its results in more detail. Design/methodology/approach: In an exploratory literature review, we review and classify 48 publications on a full-text basis with the Aachen PPC model’s tasks and functions. Two cluster analyses reveal researched and unexplored tasks and functions of the Aachen PPC model. Findings: We propose a cyber-physical PPC architecture, which incorporates current Industry 4.0 technologies, current optimization methods, optimization objectives, and disturbances relevant for realizing a PPC system in a smart factory. Current approaches mainly focus on production control using real-time information from the shop floor, part of in-house PPC. We discuss the different layers of the cyber-physical PPC architecture and propose future research directions for the unexplored tasks and functions of the Aachen PPC model. Research limitations/implications: Limitations are the strong dependence of results on search terms used and the subjective eligibility assessment and assignment of publications to the Aachen PPC model. The selection of search terms and the texts’ interpretation is based on an individual’s assessment. The revelation of unexplored tasks and functions of the Aachen PPC model might have a different outcome if the search term combination is parameterized differently. Originality/value: Using the Aachen PPC model, which holistically models PPC, the findings give comprehensive insights into the current advances of tools, methods, and challenges relevant to planning and controlling production processes under Industry 4.0Peer Reviewe

    Agent-Based Modelling and Heuristic Approach for Solving Complex OEM Flow-Shop Productions under Customer Disruptions

    Get PDF
    The application of the agent-based simulation approach in the flow-shop production environment has recently gained popularity among researchers. The concept of agent and agent functions can help to automate a variety of difficult tasks and assist decision-making in flow-shop production. This is especially so in the large-scale Original Equipment Manufacturing (OEM) industry, which is associated with many uncertainties. Among these are uncertainties in customer demand requirements that create disruptions that impact production planning and scheduling, hence, making it difficult to satisfy demand in due time, in the right order delivery sequence, and in the right item quantities. It is however important to devise means of adapting to these inevitable disruptive problems by accommodating them while minimising the impact on production performance and customer satisfaction. In this paper, an innovative embedded agent-based Production Disruption Inventory-Replenishment (PDIR) framework, which includes a novel adaptive heuristic algorithm and inventory replenishment strategy which is proposed to tackle the disruption problems. The capabilities and functionalities of agents are utilised to simulate the flow-shop production environment and aid learning and decision making. In practice, the proposed approach is implemented through a set of experiments conducted as a case study of an automobile parts facility for a real-life large-scale OEM. The results are presented in term of Key Performance Indicators (KPIs), such as the number of late/unsatisfied orders, to determine the effectiveness of the proposed approach. The results reveal a minimum number of late/unsatisfied orders, when compared with other approaches

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic

    Complex Production-Inventory Replenishment Problem with Uncertainty in Customer Behaviour

    Get PDF
    A flow-shop production-inventory system can become very complex in terms of production planning and scheduling. One of the causes of complexity in such a system is the uncertainty of customer demand behaviour which disrupts production lines and inventory control. The uncertainty in customer demand behaviour that causes production disruptions can be in the form of order cancellation, change in order delivery sequence and due time. In general, such disruptions cause order shortages, late order delivery, and the underperformance of resources, amongst others. This paper considers the random combination of occurrences of these disruptions under different production scenario problems. An innovative framework that embeds agent-based simulation, heuristic algorithm, and inventory replenishment strategy is proposed to tackle these disruption problems. The integration of these methods formed a robust platform for adapting and accommodating disruptions with minimum impact on production operations. An experimental study is performed, and the results determine the impact of disruptions under different demand and inventory statuses. An inventory replenishment method is compared with sequential and instantaneous replenishment methods to establish the significance of the proposed method
    • …
    corecore