775 research outputs found

    Post-Newtonian and Numerical Calculations of the Gravitational Self-Force for Circular Orbits in the Schwarzschild Geometry

    Full text link
    The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c<<1, and is most appropriate for small orbital velocities v. The perturbative self-force (SF) analysis requires an extreme mass ratio m1/m2<<1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles proportional to 1/(d-3) appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical SF calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.Comment: 36 pages, 3 figures; matches the published versio

    A robust implementation of the Carathéodory-Fejér method

    Get PDF
    Best rational approximations are notoriously difficult to compute. However, the difference between the best rational approximation to a function and its Carathéodory-Fejér (CF) approximation is often so small as to be negligible in practice, while CF approximations are far easier to compute. We present a robust and fast implementation of this method in the chebfun software system and illustrate its use with several examples. Our implementation handles both polynomial and rational approximation and substantially improves upon earlier published software

    Post-Newtonian Theory and Dimensional Regularization

    Get PDF
    Inspiralling compact binaries are ideally suited for application of a high-order post-Newtonian (PN) gravitational wave generation formalism. To be observed by the LIGO and VIRGO detectors, these very relativistic systems (with orbital velocities of the order of 0.5c in the last rotations) require high-accuracy templates predicted by general relativity theory. Recent calculations of the motion and gravitational radiation of compact binaries at the 3PN approximation using the Hadamard self-field regularization have left undetermined a few dimensionless coefficients called ambiguity parameters. In this article we review the application of dimensional self-field regularization, within Einstein's classical general relativity formulated in D space-time dimensions, which finally succeeded in clearing up the problem, by uniquely fixing the values of all the ambiguity parameters.Comment: 16 pages, to appear in the Proceedings of the "Albert Einstein Century Conference", Paris (2005), edited by Jean-Michel Alim

    Fast Computation of Fourier Integral Operators

    Get PDF
    We introduce a general purpose algorithm for rapidly computing certain types of oscillatory integrals which frequently arise in problems connected to wave propagation and general hyperbolic equations. The problem is to evaluate numerically a so-called Fourier integral operator (FIO) of the form e2πiΦ(x,ξ)a(x,ξ)f^(ξ)dξ\int e^{2\pi i \Phi(x,\xi)} a(x,\xi) \hat{f}(\xi) \mathrm{d}\xi at points given on a Cartesian grid. Here, ξ\xi is a frequency variable, f^(ξ)\hat f(\xi) is the Fourier transform of the input ff, a(x,ξ)a(x,\xi) is an amplitude and Φ(x,ξ)\Phi(x,\xi) is a phase function, which is typically as large as ξ|\xi|; hence the integral is highly oscillatory at high frequencies. Because an FIO is a dense matrix, a naive matrix vector product with an input given on a Cartesian grid of size NN by NN would require O(N4)O(N^4) operations. This paper develops a new numerical algorithm which requires O(N2.5logN)O(N^{2.5} \log N) operations, and as low as O(N)O(\sqrt{N}) in storage space. It operates by localizing the integral over polar wedges with small angular aperture in the frequency plane. On each wedge, the algorithm factorizes the kernel e2πiΦ(x,ξ)a(x,ξ)e^{2 \pi i \Phi(x,\xi)} a(x,\xi) into two components: 1) a diffeomorphism which is handled by means of a nonuniform FFT and 2) a residual factor which is handled by numerical separation of the spatial and frequency variables. The key to the complexity and accuracy estimates is that the separation rank of the residual kernel is \emph{provably independent of the problem size}. Several numerical examples demonstrate the efficiency and accuracy of the proposed methodology. We also discuss the potential of our ideas for various applications such as reflection seismology.Comment: 31 pages, 3 figure

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    A discrete approximation of Blake & Zisserman energy in image denoising and optimal choice of regularization parameters

    Get PDF
    We consider a multi-scale approach for the discrete approximation of a functional proposed by Bake and Zisserman (BZ) for solving image denoising and segmentation problems. The proposed method is based on simple and effective higher order varia-tional model. It consists of building linear discrete energies family which Γ-converges to the non-linear BZ functional. The key point of the approach is the construction of the diffusion operators in the discrete energies within a finite element adaptive procedure which approximate in the Γ-convergence sense the initial energy including the singular parts. The resulting model preserves the singularities of the image and of its gradient while keeping a simple structure of the underlying PDEs, hence efficient numerical method for solving the problem under consideration. A new point to make this approach work is to deal with constrained optimization problems that we circumvent through a Lagrangian formulation. We present some numerical experiments to show that the proposed approach allows us to detect first and second-order singularities. We also consider and implement to enhance the algorithms and convergence properties, an augmented Lagrangian method using the alternating direction method of Multipliers (ADMM)

    ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets

    Get PDF
    Wavelets and their associated transforms are highly efficient when approximating and analyzing one-dimensional signals. However, multivariate signals such as images or videos typically exhibit curvilinear singularities, which wavelets are provably deficient of sparsely approximating and also of analyzing in the sense of, for instance, detecting their direction. Shearlets are a directional representation system extending the wavelet framework, which overcomes those deficiencies. Similar to wavelets, shearlets allow a faithful implementation and fast associated transforms. In this paper, we will introduce a comprehensive carefully documented software package coined ShearLab 3D (www.ShearLab.org) and discuss its algorithmic details. This package provides MATLAB code for a novel faithful algorithmic realization of the 2D and 3D shearlet transform (and their inverses) associated with compactly supported universal shearlet systems incorporating the option of using CUDA. We will present extensive numerical experiments in 2D and 3D concerning denoising, inpainting, and feature extraction, comparing the performance of ShearLab 3D with similar transform-based algorithms such as curvelets, contourlets, or surfacelets. In the spirit of reproducible reseaerch, all scripts are accessible on www.ShearLab.org.Comment: There is another shearlet software package (http://www.mathematik.uni-kl.de/imagepro/members/haeuser/ffst/) by S. H\"auser and G. Steidl. We will include this in a revisio

    Decimated generalized Prony systems

    Full text link
    We continue studying robustness of solving algebraic systems of Prony type (also known as the exponential fitting systems), which appear prominently in many areas of mathematics, in particular modern "sub-Nyquist" sampling theories. We show that by considering these systems at arithmetic progressions (or "decimating" them), one can achieve better performance in the presence of noise. We also show that the corresponding lower bounds are closely related to well-known estimates, obtained for similar problems but in different contexts
    corecore