497 research outputs found

    Surface and inter-phase analysis of Composite Materials using Electromagnetic Techniques based on SQUID Sensors

    Get PDF
    In this thesis an electromagnetic characterization and a non-destructive evaluation of new advanced composite materials, Carbon Fiber Reinforced Polymers (CFRP) and Fiber-Glass Aluminium (FGA) laminates, using an eddy-current technique based on HTS dc-SQUID (Superconductive QUantum Interference Device) magnetometer is proposed. The main goal of this thesis is to propose a prototype based on a superconducting sensor, such as SQUID, to guarantee a more accuracy in the quality control at research level of the composite materials employed in the aeronautical applications. A briefly introduction about the superconductivity, a complete description of the SQUID properties and its basic working principles have been reported. Moreover, an overview of the most widely used non destructive technique employed in several industrial and research fields have been described. Particular attention is given to the eddy current testing and the technical improvement obtained using SQUID in NDE. The attention has been focused on two particular application, that are the main topics of this thesis. The first concerns with the investigation of the damage due to impact loading on the composites materials, and the second is the study of the corrosion process on the metallic surface. The electrical and mechanical properties of the tested advanced composite materials, such as Carbon Fiber Reinforced Polymers (CFRPs) and Fiber-glass Aluminium (FGA) laminates are investigated. The experimental results concern the non-destructive evaluation of impact loading on the CFRPs and FGA composites, by means of the electromagnetic techniques; the investigation of the electromechanical effect in the CFRPs using the SQUID based prototype and the AFM analyses; and the study of corrosion activity of the metallic surface using magnetic field measurement

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    RESEARCH AND DEVELOPMENT OF THIN GARNET FILM BASED MAGNETO-OPTICAL IMAGERS.

    Get PDF
    This dissertation deals with the use of magnetic single-crystal bismuth-substituted iron garnet thin films for magneto-optical imaging (MOI) of stray magnetic fields. The main advantages of such garnet-based imagers are their high sensitivity, high contrast and possibility to design films for imaging of magnetic fields in a wide range of magnitudes. The garnet films have been grown by the liquid phase epitaxy method from a flux melt on (210)- and (100)-oriented substrates and extensively characterized using various magnetic and optical methods. Specific melt compositions are identified that allow the growth of high sensitivity and high contrast indicator films on (210)-oriented substrates. Very low saturation field and high sensitivity of such garnet films are attributed to the existence of the so-called "easy plane of magnetization", a plane for which the magnetic free energy density is at a minimum for any orientation of the magnetization vector within this plane. Etching has been extensively used to investigate the effect of intrinsic film domain structures on the quality of MO imagers. It has been determined that the size of the domains reduces as the thickness of the film gets smaller. Below 1μm film thickness, the domains start evolving towards the "single domain" state which is beneficial for imaging purposes. The comparison of the imaging capabilities of the etched films grown on (210)- and (100)-oriented substrates has been performed and the resolution of the (100)-oriented imagers has been found to be inferior to the imagers based on the (210)-oriented samples with an easy plane of magnetization. The possibilities to enhance magneto-optic effects by strong local electric fields from optically induced plasmon resonances in gold nanoparticles embedded in garnet media are analyzed. The experimental investigation of the plasmon resonance enhancement of the Faraday effect has been performed and about 50% increase in Faraday rotation angle at a wavelength of 633 nm has been measured for the samples of interest. It is expected that under ideal conditions of the plasmon resonance excitation as well as proper garnet film parameters, an increase in Faraday rotation up to 400% could be achieved

    Development of Magnetic Field Sensors Using Bismuth - Substituted Garnets Thin Films with In-Plane Magnetization

    Get PDF
    In this thesis, the use of magnetic single crystal Bismuth-substituted Iron Garnet thin-films with giant magneto-optical effect as optical sensors for measuring low intensity magnetic fields over a high frequency range (up to 1GHz) is discussed. The advantages of these optical sensors are high intrinsic sensitivity and the possibility of tailoring the field range of the sensor. Such sensors could find applications in various industry and research fields where high sensitivity and electric isolation are required, such as power industry, vehicle detection, and read heads for recording magnetic media with high-density and high transfer rates. The thesis has three major components that correspond, in order, to the following topics: garnet growth, characterization and actual device design. First, the liquid phase epitaxy method is discussed for the growth of single crystal epitaxial garnet thin films of high optical quality. Second, the garnet thin films are fully characterized using various magnetic and optical techniques. Novel optical techniques are suggested, that allow the local measurement of properties such as magnetostriction constants and magnetic anisotropy of garnets. The results of these extensive measurements allow for the identification of melt compositions and growth conditions that yield thin garnet films with in-plane magnetization, giant Faraday rotation per unit length, large negative uniaxial anisotropies and small cubic anisotropy, as required for the sensing applications. In the end, the design of magnetic field sensors based on single and multi-layer garnet thin films is demonstrated, and devices are built for measurements of response and noise equivalent fields. Under the category of sensors, another sensing application is included, that utilizes garnet thin films for direct imaging of two-dimensional fringing magnetic fields with sub-micron resolution
    corecore