59,077 research outputs found

    Pushing towards the Limit of Sampling Rate: Adaptive Chasing Sampling

    Full text link
    Measurement samples are often taken in various monitoring applications. To reduce the sensing cost, it is desirable to achieve better sensing quality while using fewer samples. Compressive Sensing (CS) technique finds its role when the signal to be sampled meets certain sparsity requirements. In this paper we investigate the possibility and basic techniques that could further reduce the number of samples involved in conventional CS theory by exploiting learning-based non-uniform adaptive sampling. Based on a typical signal sensing application, we illustrate and evaluate the performance of two of our algorithms, Individual Chasing and Centroid Chasing, for signals of different distribution features. Our proposed learning-based adaptive sampling schemes complement existing efforts in CS fields and do not depend on any specific signal reconstruction technique. Compared to conventional sparse sampling methods, the simulation results demonstrate that our algorithms allow 46%46\% less number of samples for accurate signal reconstruction and achieve up to 57%57\% smaller signal reconstruction error under the same noise condition.Comment: 9 pages, IEEE MASS 201

    High Energy Cosmic Neutrinos

    Get PDF
    While the general principles of high-energy neutrino detection have been understood for many years, the deep, remote geographical locations of suitable detector sites have challenged the ingenuity of experimentalists, who have confronted unusual deployment, calibration, and robustness issues. Two high energy neutrino programs are now operating (Baikal and AMANDA), with the expectation of ushering in an era of multi-messenger astronomy, and two Mediterranean programs have made impressive progress. The detectors are optimized to detect neutrinos with energies of the order of 1-10 TeV, although they are capable of detecting neutrinos with energies of tens of MeV to greater than PeV. This paper outlines the interdisciplinary scientific agenda, which span the fields of astronomy, particle physics, and cosmic ray physics, and describes ongoing worldwide experimental programs to realize these goals.Comment: 15 pages, 9 figures, talk presented at the Nobel Symposium on Particle Physics and the Universe, Sweden, August 199

    Distributed Control of Microscopic Robots in Biomedical Applications

    Full text link
    Current developments in molecular electronics, motors and chemical sensors could enable constructing large numbers of devices able to sense, compute and act in micron-scale environments. Such microscopic machines, of sizes comparable to bacteria, could simultaneously monitor entire populations of cells individually in vivo. This paper reviews plausible capabilities for microscopic robots and the physical constraints due to operation in fluids at low Reynolds number, diffusion-limited sensing and thermal noise from Brownian motion. Simple distributed controls are then presented in the context of prototypical biomedical tasks, which require control decisions on millisecond time scales. The resulting behaviors illustrate trade-offs among speed, accuracy and resource use. A specific example is monitoring for patterns of chemicals in a flowing fluid released at chemically distinctive sites. Information collected from a large number of such devices allows estimating properties of cell-sized chemical sources in a macroscopic volume. The microscopic devices moving with the fluid flow in small blood vessels can detect chemicals released by tissues in response to localized injury or infection. We find the devices can readily discriminate a single cell-sized chemical source from the background chemical concentration, providing high-resolution sensing in both time and space. By contrast, such a source would be difficult to distinguish from background when diluted throughout the blood volume as obtained with a blood sample
    corecore