63 research outputs found

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor
    • …
    corecore