1,735 research outputs found

    Geometric and form feature recognition tools applied to a design for assembly methodology

    Get PDF
    The paper presents geometric tools for an automated Design for Assembly (DFA) assessment system. For each component in an assembly a two step features search is performed: firstly (using the minimal bounding box) mass, dimensions and symmetries are identified allowing the part to be classified, according to DFA convention, as either rotational or prismatic; secondly form features are extracted allowing an effective method of mechanised orientation to be determined. Together these algorithms support the fuzzy decision support system, of an assembly-orientated CAD system known as FuzzyDFA

    Geometric and form feature recognition tools applied to a design for assembly methodology

    No full text
    International audienceThe paper presents geometric tools for an automated Design for Assembly (DFA) assessment system. For each component in an assembly a two step features search is performed: firstly (using the minimal bounding box) mass, dimensions and symmetries are identified allowing the part to be classified, according to DFA convention, as either rotational or prismatic; secondly form features are extracted allowing an effective method of mechanised orientation to be determined. Together these algorithms support the fuzzy decision support system, of an assembly-orientated CAD system known as FuzzyDFA

    Geometric and form feature recognition tools applied to a design for assembly methodology

    Get PDF
    International audienceThe paper presents geometric tools for an automated Design for Assembly (DFA) assessment system. For each component in an assembly a two step features search is performed: firstly (using the minimal bounding box) mass, dimensions and symmetries are identified allowing the part to be classified, according to DFA convention, as either rotational or prismatic; secondly form features are extracted allowing an effective method of mechanised orientation to be determined. Together these algorithms support the fuzzy decision support system, of an assembly-orientated CAD system known as FuzzyDFA

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Study of Finite Elements-based reliability and maintenance algorithmic methodologies analysis applied to aircraft structures and design optimization

    Get PDF
    This thesis presents the development of a research methodology oriented to the analysis of an aircraft structure in terms of operational reliability and maintainability requirements regarding its airworthiness. The study has been focused on modern commercial aircraft models, carrying out a market research and model selection according to different criteria. The study then develops a practical implementation consisting of the design approach of the aircraft airframe and main structural components for its subsequent numerical analysis and simulation. The numerical simulations will be computed by application of the Finite Elements Method on the main structural systems of the aircraft and establishment of boundary conditions. These simulations will allow the development of a computational study on linear, non-linear, and transient simulations of static loads, buckling, modal analysis, temperature, fatigue and thermal stress of individual structures and full assembly in different conditions. Finally, these results will be assessed and exported to a Matlab code which will compute an algorithmic methodology in order to approach the operational reliability and safety of the aircraft in the studied conditions. The thesis will conclude with a review of airworthiness regulations a proposal of research paths and further development of the methodology implemented

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Product complexity assessment for a Proactive-DFA implementation (Simplicity + Simplicity = Complexity)

    Get PDF
    This thesis presents product complexity as a criterion for the optimisation of product design in the light of an Assembly-Oriented Design and Design for Assembly implementation. It takes a holistic approach to the evaluation of the product architecture by presenting a set of indicators that help examine the product structure at two different levels: Assembly and Component complexity. Assembly complexity assessment is further sub-divided into Structural and Sequence complexity. The latter is a well-known and thoroughly studied area in assembly sequence evaluation, whereas the former gives a novel and original approach to drawing attention to those areas in the product configuration that will consume more resources (i.e. time and tooling required). Component complexity, on the other hand, is sub-divided into manufacturing and process handling/manipulation complexity. The first area has been addressed by the manufacturing analysis section of most Design for Assembly and Manufacturing methodologies, but it has been traditionally addressed as a manual and chart-based evaluation. This is a rigid approach that leaves little room for expansion and has no connection with the product structure. The metrics presented in this work embody a new approach that takes into account the component-to-component interactions and allows the analysis of component shape by extracting its geometry characteristics and comparing them with particular traits of the manufacturing processes available to the designer. Additionally, the metrics presented in this work can be used to make an assessment of the product complexity at a particular point (static complexity) in the development cycle. They can also be registered over a period of time to provide an estimate of the possible consequences of the decisions made during a part of the development cycle (dynamic complexity). By using the methods developed, designers could reduce production costs and increase the reliability of their products.Ph

    Re-architecture : lifespan rehabilitation of built heritage - scapus

    Get PDF

    Automated gait segmentation and tracking using inertial measurement units

    Get PDF
    Abstract. In this thesis, a methodology is presented to automate the labelling, event detection, segmentation, tracking, and parameter extraction of IMU gait data for sensors placed on the feet and shanks. The algorithms presented were tested using IMU data from three different styles of gait, normal gait, antalgic gait, and limited mobility gait. The algorithms developed were found effective for all of the simulated gait styles without mislabelling or detecting erroneous gait segments. The resultant gait trajectories and parameters were analyzed and were found to accurately depict the differences between each of the different styles of gait. The methodology presented can be used for the rapid and accurate processing of gait data for multiple styles of gait. This quantification of gait data can enable the collection of IMU gait data on a larger scale. This provides an accessible, low-cost option for out-of-laboratory gait data collection
    corecore