996 research outputs found

    Heterogeneous data fusion for brain psychology applications

    No full text
    This thesis aims to apply Empirical Mode Decomposition (EMD), Multiscale Entropy (MSE), and collaborative adaptive filters for the monitoring of different brain consciousness states. Both block based and online approaches are investigated, and a possible extension to the monitoring and identification of Electromyograph (EMG) states is provided. Firstly, EMD is employed as a multiscale time-frequency data driven tool to decompose a signal into a number of band-limited oscillatory components; its data driven nature makes EMD an ideal candidate for the analysis of nonlinear and non-stationary data. This methodology is further extended to process multichannel real world data, by making use of recent theoretical advances in complex and multivariate EMD. It is shown that this can be used to robustly measure higher order features in multichannel recordings to robustly indicate ‘QBD’. In the next stage, analysis is performed in an information theory setting on multiple scales in time, using MSE. This enables an insight into the complexity of real world recordings. The results of the MSE analysis and the corresponding statistical analysis show a clear difference in MSE between the patients in different brain consciousness states. Finally, an online method for the assessment of the underlying signal nature is studied. This method is based on a collaborative adaptive filtering approach, and is shown to be able to approximately quantify the degree of signal nonlinearity, sparsity, and non-circularity relative to the constituent subfilters. To further illustrate the usefulness of the proposed data driven multiscale signal processing methodology, the final case study considers a human-robot interface based on a multichannel EMG analysis. A preliminary analysis shows that the same methodology as that applied to the analysis of brain cognitive states gives robust and accurate results. The analysis, simulations, and the scope of applications presented suggest great potential of the proposed multiscale data processing framework for feature extraction in multichannel data analysis. Directions for future work include further development of real-time feature map approaches and their use across brain-computer and brain-machine interface applications

    Wearable in-ear pulse oximetry: theory and applications

    Get PDF
    Wearable health technology, most commonly in the form of the smart watch, is employed by millions of users worldwide. These devices generally exploit photoplethysmography (PPG), the non-invasive use of light to measure blood volume, in order to track physiological metrics such as pulse and respiration. Moreover, PPG is commonly used in hospitals in the form of pulse oximetry, which measures light absorbance by the blood at different wavelengths of light to estimate blood oxygen levels (SpO2). This thesis aims to demonstrate that despite its widespread usage over many decades, this sensor still possesses a wealth of untapped value. Through a combination of advanced signal processing and harnessing the ear as a location for wearable sensing, this thesis introduces several novel high impact applications of in-ear pulse oximetry and photoplethysmography. The aims of this thesis are accomplished through a three pronged approach: rapid detection of hypoxia, tracking of cognitive workload and fatigue, and detection of respiratory disease. By means of the simultaneous recording of in-ear and finger pulse oximetry at rest and during breath hold tests, it was found that in-ear SpO2 responds on average 12.4 seconds faster than the finger SpO2. This is likely due in part to the ear being in close proximity to the brain, making it a priority for oxygenation and thus making wearable in-ear SpO2 a good proxy for core blood oxygen. Next, the low latency of in-ear SpO2 was further exploited in the novel application of classifying cognitive workload. It was found that in-ear pulse oximetry was able to robustly detect tiny decreases in blood oxygen during increased cognitive workload, likely caused by increased brain metabolism. This thesis demonstrates that in-ear SpO2 can be used to accurately distinguish between different levels of an N-back memory task, representing different levels of mental effort. This concept was further validated through its application to gaming and then extended to the detection of driver related fatigue. It was found that features derived from SpO2 and PPG were predictive of absolute steering wheel angle, which acts as a proxy for fatigue. The strength of in-ear PPG for the monitoring of respiration was investigated with respect to the finger, with the conclusion that in-ear PPG exhibits far stronger respiration induced intensity variations and pulse amplitude variations than the finger. All three respiratory modes were harnessed through multivariate empirical mode decomposition (MEMD) to produce spirometry-like respiratory waveforms from PPG. It was discovered that these PPG derived respiratory waveforms can be used to detect obstruction to breathing, both through a novel apparatus for the simulation of breathing disorders and through the classification of chronic obstructive pulmonary disease (COPD) in the real world. This thesis establishes in-ear pulse oximetry as a wearable technology with the potential for immense societal impact, with applications from the classification of cognitive workload and the prediction of driver fatigue, through to the detection of chronic obstructive pulmonary disease. The experiments and analysis in this thesis conclusively demonstrate that widely used pulse oximetry and photoplethysmography possess a wealth of untapped value, in essence teaching the old PPG sensor new tricks.Open Acces

    Computing driver tiredness and fatigue in automobile via eye tracking and body movements

    Get PDF
    The aim of this paper is to classify the driver tiredness and fatigue in automobile via eye tracking and body movements using deep learning based Convolutional Neural Network (CNN) algorithm. Vehicle driver face localization serves as one of the most widely used real-world applications in fields like toll control, traffic accident scene analysis, and suspected vehicle tracking. The research proposed a CNN classifier for simultaneously localizing the region of human face and eye positioning. The classifier, rather than bounding rectangles, gives bounding quadrilaterals, which gives a more precise indication for vehicle driver face localization. The adjusted regions are preprocessed to remove noise and passed to the CNN classifier for real time processing. The preprocessing of the face features extracts connected components, filters them by size, and groups them into face expressions. The employed CNN is the well-known technology for human face recognition. One we aim to extract the facial landmarks from the frames, we will then leverage classification models and deep learning based convolutional neural networks that predict the state of the driver as 'Alert' or 'Drowsy' for each of the frames extracted. The CNN model could predict the output state labels (Alert/Drowsy) for each frame, but we wanted to take care of sequential image frames as that is extremely important while predicting the state of an individual. The process completes, if all regions have a sufficiently high score or a fixed number of retries are exhausted. The output consists of the detected human face type, the list of regions including the extracted mouth and eyes with recognition reliability through CNN with an accuracy of 98.57% with 100 epochs of training and testing

    Systems engineering approaches to safety in transport systems

    Get PDF
    openDuring driving, driver behavior monitoring may provide useful information to prevent road traffic accidents caused by driver distraction. It has been shown that 90% of road traffic accidents are due to human error and in 75% of these cases human error is the only cause. Car manufacturers have been interested in driver monitoring research for several years, aiming to enhance the general knowledge of driver behavior and to evaluate the functional state as it may drastically influence driving safety by distraction, fatigue, mental workload and attention. Fatigue and sleepiness at the wheel are well known risk factors for traffic accidents. The Human Factor (HF) plays a fundamental role in modern transport systems. Drivers and transport operators control a vehicle towards its destination in according to their own sense, physical condition, experience and ability, and safety strongly relies on the HF which has to take the right decisions. On the other hand, we are experiencing a gradual shift towards increasingly autonomous vehicles where HF still constitutes an important component, but may in fact become the "weakest link of the chain", requiring strong and effective training feedback. The studies that investigate the possibility to use biometrical or biophysical signals as data sources to evaluate the interaction between human brain activity and an electronic machine relate to the Human Machine Interface (HMI) framework. The HMI can acquire human signals to analyse the specific embedded structures and recognize the behavior of the subject during his/her interaction with the machine or with virtual interfaces as PCs or other communication systems. Based on my previous experience related to planning and monitoring of hazardous material transport, this work aims to create control models focused on driver behavior and changes of his/her physiological parameters. Three case studies have been considered using the interaction between an EEG system and external device, such as driving simulators or electronical components. A case study relates to the detection of the driver's behavior during a test driver. Another case study relates to the detection of driver's arm movements according to the data from the EEG during a driver test. The third case is the setting up of a Brain Computer Interface (BCI) model able to detect head movements in human participants by EEG signal and to control an electronic component according to the electrical brain activity due to head turning movements. Some videos showing the experimental results are available at https://www.youtube.com/channel/UCj55jjBwMTptBd2wcQMT2tg.openXXXIV CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Ingegneria dei sistemiZero, Enric

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies

    Validation of Electroencephalographic Recordings Obtained with a Consumer-Grade, Single Dry Electrode, Low-Cost Device: A Comparative Study

    Get PDF
    The functional validity of the signal obtained with low-cost electroencephalography (EEG) devices is still under debate. Here, we have conducted an in-depth comparison of the EEG-recordings obtained with a medical-grade golden-cup electrodes ambulatory device, the SOMNOwatch + EEG-6, vs those obtained with a consumer-grade, single dry electrode low-cost device, the NeuroSky MindWave, one of the most a ordable devices currently available. We recorded EEG signals at Fp1 using the two di erent devices simultaneously on 21 participants who underwent two experimental phases: a 12-minute resting state task (alternating two cycles of closed/open eyes periods), followed by 60-minute virtual-driving task. We evaluated the EEG recording quality by comparing the similarity between the temporal data series, their spectra, their signal-to-noise ratio, the reliability of EEG measurements (comparing the closed eyes periods), as well as their blink detection rate. We found substantial agreement between signals: whereas, qualitatively, the NeuroSky MindWave presented higher levels of noise and a biphasic shape of blinks, the similarity metric indicated that signals from both recording devices were significantly correlated. While the NeuroSky MindWave was less reliable, both devices had a similar blink detection rate. Overall, the NeuroSky MindWave is noise-limited, but provides stable recordings even through long periods of time. Furthermore, its data would be of adequate quality compared to that of conventional wet electrode EEG devices, except for a potential calibration error and spectral differences at low frequencies.Spanish Department of Transportation, Madrid, Spain (Grant No. SPIP2014-1426 to L.L.D.S.)A.C. is funded by a Spanish Ministry of Economy and Competitiveness grant (PSI2016-80558-R to A.C.)S.R. is funded by an Andalusian Government Excellence Research grant (P11-TIC-7983)L.J.F. is funded by a Spanish Ministry of Economy and Competitiveness grant (PSI2014-53427-P) and a Fundación Séneca grant (19267/PI/14)L.L.D.S. is currently supported by the Ramón y Cajal fellowship program (RYC-2015-17483)C.D.-P. is currently supported by the CEIMAR program (CEIMAR2018-2)C.D.-P. and L.L.D.S. are supported by a Santander Bank—CEMIX UGR-MADOC grant (Project PINS 2018-15

    A systematic review of physiological signals based driver drowsiness detection systems.

    Get PDF
    Driving a vehicle is a complex, multidimensional, and potentially risky activity demanding full mobilization and utilization of physiological and cognitive abilities. Drowsiness, often caused by stress, fatigue, and illness declines cognitive capabilities that affect drivers' capability and cause many accidents. Drowsiness-related road accidents are associated with trauma, physical injuries, and fatalities, and often accompany economic loss. Drowsy-related crashes are most common in young people and night shift workers. Real-time and accurate driver drowsiness detection is necessary to bring down the drowsy driving accident rate. Many researchers endeavored for systems to detect drowsiness using different features related to vehicles, and drivers' behavior, as well as, physiological measures. Keeping in view the rising trend in the use of physiological measures, this study presents a comprehensive and systematic review of the recent techniques to detect driver drowsiness using physiological signals. Different sensors augmented with machine learning are utilized which subsequently yield better results. These techniques are analyzed with respect to several aspects such as data collection sensor, environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc. Similarly, by investigating the type of sensors involved in experiments, this study discusses the advantages and disadvantages of existing studies and points out the research gaps. Perceptions and conceptions are made to provide future research directions for drowsiness detection techniques based on physiological signals. [Abstract copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others
    • …
    corecore