31,389 research outputs found

    Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance Uncertainty

    Full text link
    This paper proposes novel spectrum sensing algorithm, and examines the sensing throughput tradeoff for cognitive radio (CR) networks under noise variance uncertainty. It is assumed that there are one white sub-band, and one target sub-band which is either white or non-white. Under this assumption, first we propose a novel generalized energy detector (GED) for examining the target sub-band by exploiting the noise information of the white sub-band, then, we study the tradeoff between the sensing time and achievable throughput of the CR network. To study this tradeoff, we consider the sensing time optimization for maximizing the throughput of the CR network while appropriately protecting the primary network. The sensing time is optimized by utilizing the derived detection and false alarm probabilities of the GED. The proposed GED does not suffer from signal to noise ratio (SNR) wall (i.e., robust against noise variance uncertainty) and outperforms the existing signal detectors. Moreover, the relationship between the proposed GED and conventional energy detector (CED) is quantified analytically. We show that the optimal sensing times with perfect and imperfect noise variances are not the same. In particular, when the frame duration is 2s, and SNR is -20dB, and each of the bandwidths of the white and target sub-bands is 6MHz, the optimal sensing times are 28.5ms and 50.6ms with perfect and imperfect noise variances, respectively.Comment: Accepted in CROWNCOM, June 2014, Oulu, Finlan

    Adaptive detection in nonhomogeneous environments using the generalized eigenrelation

    Get PDF
    This letter considers adaptive detection of a signal in a nonhomogeneous environment, more precisely under a covariance mismatch between the test vector and the training samples, due to an interference that is not accounted for by the training samples, e.g., a sidelobe target or an undernulled interference. We assume that the covariance matrices of the test vector and the training samples verify the so-called generalized eigenrelation. Under this assumption, we derive the generalized likelihood ratio test and show that it coincides with Kelly’s detector

    Detection of multiplicative noise in stationary random processes using second- and higher order statistics

    Get PDF
    This paper addresses the problem of detecting the presence of colored multiplicative noise, when the information process can be modeled as a parametric ARMA process. For the case of zero-mean multiplicative noise, a cumulant based suboptimal detector is studied. This detector tests the nullity of a specific cumulant slice. A second detector is developed when the multiplicative noise is nonzero mean. This detector consists of filtering the data by an estimated AR filter. Cumulants of the residual data are then shown to be well suited to the detection problem. Theoretical expressions for the asymptotic probability of detection are given. Simulation-derived finite-sample ROC curves are shown for different sets of model parameters

    Generalized detector as a spectrum sensor in cognitive radio networks

    Get PDF
    The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detecto

    Improved energy detector for random signals in Gaussian noise

    Get PDF
    New and improved energy detector for random signals in Gaussian noise is proposed by replacing the squaring operation of the signal amplitude in the conventional energy detector with an arbitrary positive power operation. Numerical results show that the best power operation depends on the probability of false alarm, the probability of detection, the average signal-to-noise ratio or the sample size. By choosing the optimum power operation according to different system settings, new energy detectors with better detection performances can be derived. These results give useful guidance on how to improve the performances of current wireless systems using the energy detector. It also confirms that the conventional energy detector based on the generalized likelihood ratio test using the generalized likelihood function is not optimum in terms of the detection performance

    Echo Cancellation : the generalized likelihood ratio test for double-talk vs. channel change

    Get PDF
    Echo cancellers are required in both electrical (impedance mismatch) and acoustic (speaker-microphone coupling) applications. One of the main design problems is the control logic for adaptation. Basically, the algorithm weights should be frozen in the presence of double-talk and adapt quickly in the absence of double-talk. The optimum likelihood ratio test (LRT) for this problem was studied in a recent paper. The LRT requires a priori knowledge of the background noise and double-talk power levels. Instead, this paper derives a generalized log likelihood ratio test (GLRT) that does not require this knowledge. The probability density function of a sufficient statistic under each hypothesis is obtained and the performance of the test is evaluated as a function of the system parameters. The receiver operating characteristics (ROCs) indicate that it is difficult to correctly decide between double-talk and a channel change, based upon a single look. However, detection based on about 200 successive samples yields a detection probability close to unity (0.99) with a small false alarm probability (0.01) for the theoretical GLRT model. Application of a GLRT-based echo canceller (EC) to real voice data shows comparable performance to that of the LRT-based EC given in a recent paper

    Fast watermarking of MPEG-1/2 streams using compressed-domain perceptual embedding and a generalized correlator detector

    Get PDF
    A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams). Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video
    corecore