3,271 research outputs found

    Detection of Winding Asymmetries in Wound-Rotor Induction Motors via Transient Analysis of the External Magnetic Field

    Full text link
    © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Over recent decades, the detection of faults in induction motors (IMs) has been mainly focused in cage motors due to their extensive use. However, in recent years, wound-rotor motors have received special attention because of their broad use as generators in wind turbine units, as well as in some large power applications in industrial plants. Some classical approaches perform the detection of certain faults based on the fast Fourier transform analysis of the steady state current (motor current signature analysis); they have been lately complemented with new transient time-frequency-based techniques to avoid false alarms. Nonetheless, there is still a need to improve the already existing methods to overcome some of their remaining drawbacks and increase the reliability of the diagnostic. In this regard, emergent technologies are being explored, such as the analysis of stray flux at the vicinity of the motor, which has been proven to be a promising option to diagnose the motor condition. Recently, this technique has been applied to detect broken rotor bar failures and misalignments in cage motors, offering the advantage of being a noninvasive tool with simple implementation and even avoiding some drawbacks of well-established tools. However, the application of these techniques to wound rotor IMs (WRIMs) has not been studied. This article explores the analysis of the external magnetic field under the starting to detect rotor winding asymmetry defects in WRIMs by using advanced signal processing techniques. Moreover, a new fault indicator based on this quantity is introduced, comparing different levels of fault and demonstrating the potential of this technique to quantify and monitor rotor winding asymmetries in WRIMs.This work was supported by the Spanish "Ministerio de Ciencia Innovacion y Universidades" and Fondo Europeo de Desarrollo Regional program in the framework of the "Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" under Grant PGC2018-095747-B-I00.Zamudio-Ramírez, I.; Antonino Daviu, JA.; Osornio-Rios, RA.; Romero-Troncoso, RDJ.; Razik, H. (2020). Detection of Winding Asymmetries in Wound-Rotor Induction Motors via Transient Analysis of the External Magnetic Field. IEEE Transactions on Industrial Electronics. 67(6):5050-5059. https://doi.org/10.1109/TIE.2019.2931274S5050505967

    Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review

    Full text link
    [EN] Magnetic flux analysis is a condition monitoring technique that is drawing the interest of many researchers and motor manufacturers. The great enhancements and reduction in the costs and dimensions of the required sensors, the development of advanced signal processing techniques that are suitable for flux data analysis, along with other inherent advantages provided by this technology are relevant aspects that have allowed the proliferation of flux-based techniques. This paper reviews the most recent scientific contributions related to the development and application of flux-based methods for the monitoring of rotating electric machines. Particularly, aspects related to the main sensors used to acquire magnetic flux signals as well as the leading signal processing and classification techniques are commented. The discussion is focused on the diagnosis of different types of faults in the most common rotating electric machines used in industry, namely: squirrel cage induction machines (SCIM), wound rotor induction machines (WRIM), permanent magnet machines (PMM) and wound field synchronous machines (WFSM). A critical insight of the techniques developed in the area is provided and several open challenges are also discussed.This work was supported by the Spanish 'Ministerio de Ciencia Innovación y Universidades' and FEDER program in the framework of the "Proyectos de I+D de Generación de Conocimiento del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" reference PGC2018-095747-B-I00 and by the Consejo Nacional de Ciencia y Tecnología under CONACyT Scholarship with key code 2019-000037-02NACF. Paper no. TII-20-5308.Zamudio-Ramírez, I.; Osornio-Rios, RA.; Antonino-Daviu, J.; Razik, H.; Romero-Troncoso, RDJ. (2022). Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Transactions on Industrial Informatics. 18(5):2895-2908. https://doi.org/10.1109/TII.2021.30705812895290818

    Evaluation of the Detectability of Electromechanical Faults in Induction Motors Via Transient Analysis of the Stray Flux

    Get PDF
    © 1972-2012 IEEE. The stray flux that is present in the vicinity of an induction motor is a very interesting information source to detect several types of failures in these machines. The analysis of this quantity can be employed, in some cases, as a supportive tool to complement the diagnosis provided by other quantities. In other cases, when no other motor quantities are available, stray flux analysis can become one of the few alternatives to evaluate the motor condition. Its noninvasive nature, low cost, and easy implementation makes it a very interesting option that requires further investigation. The aim of this work is to evaluate the suitability of the stray flux analysis under the starting transient as a way to detect certain faults in induction motors (broken rotor bars and misalignments), even when these types of faults coexist in the motor. To this end, advanced signal processing tools will be applied. Several positions of the flux sensors are considered in this study. Also, for the first time, a fault indicator based on the stray flux analysis under the starting is introduced and its sensitivity is compared versus other indicators relying on other quantities. It must be emphasized that, since the capture of the transient and steady-state flux signals can be carried out in the same measurement, the application of the approach presented in this work is straightforward and its derived information may become crucial for the diagnosis of some faults.Ministerio de Economía y Competitividad’ (MINECO) and FEDER program in the framework of the ‘Proyectos I+D del Subprograma de Generación de Conocimiento, Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia’ (ref: DPI2014-52842-P)

    Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods

    Full text link
    (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] In the induction motor predictive maintenance area, there is a continuous search for new techniques and methods that can provide additional information for a more reliable determination of the motor condition. In this context, the analysis of the stray flux has drawn the interest of many researchers. The simplicity, low cost and potential of this technique makes it attractive for complementing the diagnosis provided by other well-established methods. More specifically, the study of this quantity under the starting has been recently proposed as a valuable tool for the diagnosis of certain electromechanical faults. Despite this fact, the research in this approach is still incipient and the employed signal processing tools must be still optimized for a better visualization of the fault components. Moreover, the development of advanced algorithms that enable the automatic identification of the resulting transient patterns is another crucial target within this area. This article presents an advanced algorithm based on the combined application of MUSIC and neural networks that enables the automatic identification of the time-frequency patterns created by the stray flux fault components under starting as well as the subsequent determination of the fault severity level. Two faults are considered in the work: rotor problems and misalignments. Also, different positions of the external coil sensor are studied. The results prove the potential of the intelligent algorithm for the reliable diagnosis of electromechanical faults.This work was supported in part by the Spanish "Ministerio de Ciencia Innovacion y Universidades" and in part by FEDER program in the "Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" (PGC2018-095747-B-I00).Zamudio-Ramírez, I.; Ramirez-Núñez, JA.; Antonino Daviu, JA.; Osornio-Rios, RA.; Quijano-Lopez, A.; Razik, H.; Romero-Troncoso, RDJ. (2020). Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods. IEEE Transactions on Industry Applications. 56(4):3604-3613. https://doi.org/10.1109/TIA.2020.2988002S3604361356

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained

    Non-invasive load monitoring of induction motor drives using magnetic flux sensors

    Get PDF
    Existing load monitoring methods for induction machines are generally effective, but suffer from sensitivity problems at low speeds and non-linearity problems at high supply frequencies. This study proposes a new noninvasive load monitoring method based on giant magnetoresistance flux sensors to trace stray flux leaking from induction motors. Finite element analysis is applied to analyse stray flux features of test machines. Contrary to the conventional methods of measuring stator and/or rotator rotor voltage and current, the proposed method measures the dynamic magnetic field at specific locations and provides time-spectrum features (e.g. spectrograms), response time load and stator/rotor characteristics. Three induction motors with different starting loading profiles are tested at two separate test benches and their results are analysed in the time-frequency domain. Their steady features and dynamic load response time through spectrograms under variable loads are extracted to correlate with load variations based on spectrogram information. In addition, the transient stray flux spectrogram and time information are more effective for load monitoring than steady state information from numerical and experimental studies. The proposed method is proven to be a low-cost and non-invasive method for induction machine load monitoring

    Static and dynamic eccentricity fault diagnosis of large salient pole synchronous generators by means of external magnetic field

    Get PDF
    Although synchronous generators are robust and long-lasting equipment of power plants, consistent electricity production depends on their health conditions. Static and dynamic eccentricity faults are among the prevalent faults that may have a costly effect. Although several methods have been proposed in the literature to detect static and dynamic eccentricity faults in salient pole synchronous generators (SPSGs), they are non-sensitive to a low degree of failure and require a predefined threshold to recognise the fault occurrence that may vary based on machine configuration. This article presents a detailed magnetic analysis of the SPSGs with static and dynamic eccentricity faults by focusing on the external magnetic field. The external magnetic field was measured using two search coils installed on the backside of the stator yoke. Also, advanced signal processing tools based on wavelet entropy were used to analyse the induced electromotive force (emf) in search coils to extract the fault index. The proposed index required no threshold to recognise the starting point of fault occurrence and was sensitive to a low degree of fault. It was also non-sensitive to load variation and noise that may induce a false alarm

    Modelling and Detecting Faults of Permanent Magnet Synchronous Motors in Dynamic Operations

    Get PDF
    Paper VI is excluded from the dissertation until the article will be published.Permanent magnet synchronous motors (PMSMs) have played a key role in commercial and industrial applications, i.e. electric vehicles and wind turbines. They are popular due to their high efficiency, control simplification and large torque-to-size ratio although they are expensive. A fault will eventually occur in an operating PMSM, either by improper maintenance or wear from thermal and mechanical stresses. The most frequent PMSM faults are bearing faults, short-circuit and eccentricity. PMSM may also suffer from demagnetisation, which is unique in permanent magnet machines. Condition monitoring or fault diagnosis schemes are necessary for detecting and identifying these faults early in their incipient state, e.g. partial demagnetisation and inter-turn short circuit. Successful fault classification will ensure safe operations, speed up the maintenance process and decrease unexpected downtime and cost. The research in recent years is drawn towards fault analysis under dynamic operating conditions, i.e. variable load and speed. Most of these techniques have focused on the use of voltage, current and torque, while magnetic flux density in the air-gap or the proximity of the motor has not yet been fully capitalised. This dissertation focuses on two main research topics in modelling and diagnosis of faulty PMSM in dynamic operations. The first problem is to decrease the computational burden of modelling and analysis techniques. The first contributions are new and faster methods for computing the permeance network model and quadratic time-frequency distributions. Reducing their computational burden makes them more attractive in analysis or fault diagnosis. The second contribution is to expand the model description of a simpler model. This can be achieved through a field reconstruction model with a magnet library and a description of both magnet defects and inter-turn short circuits. The second research topic is to simplify the installation and complexity of fault diagnosis schemes in PMSM. The aim is to reduce required sensors of fault diagnosis schemes, regardless of operation profiles. Conventional methods often rely on either steady-state or predefined operation profiles, e.g. start-up. A fault diagnosis scheme robust to any speed changes is desirable since a fault can be detected regardless of operations. The final contribution is the implementation of reinforcement learning in an active learning scheme to address the imbalance dataset problem. Samples from a faulty PMSM are often initially unavailable and expensive to acquire. Reinforcement learning with a weighted reward function might balance the dataset to enhance the trained fault classifier’s performance.publishedVersio

    A New Approach for Broken Rotor Bar Detection in Induction Motors Using Frequency Extraction in Stray Flux Signals

    Get PDF
    This paper offers a reliable solution to the detection of broken rotor bars in induction machines with a novel methodology, which is based on the fact that the fault-related harmonics will have oscillating amplitudes due to the speed ripple effect. The method consists of two main steps: Initially, a time-frequency transformation is used and the focus is given on the steady-state regime; thereupon, the fault-related frequencies are handled as periodical signals over time and the classical fast Fourier transform is used for the evaluation of their own spectral content. This leads to the discrimination of subcomponents related to the fault and to the evaluation of their amplitudes. The versatility of the proposed method relies on the fact that it reveals the aforementioned signatures to detect the fault, regardless of the spatial location of the broken rotor bars. Extensive finite element simulations on a 1.1 MW induction motor and experimental testing on a 1.1 kW induction motor lead to the conclusion that the method can be generalized on any type of induction motor independently from the size, power, number of poles, and rotor slot numbers
    • …
    corecore