1,530 research outputs found

    Analyzing Social and Stylometric Features to Identify Spear phishing Emails

    Full text link
    Spear phishing is a complex targeted attack in which, an attacker harvests information about the victim prior to the attack. This information is then used to create sophisticated, genuine-looking attack vectors, drawing the victim to compromise confidential information. What makes spear phishing different, and more powerful than normal phishing, is this contextual information about the victim. Online social media services can be one such source for gathering vital information about an individual. In this paper, we characterize and examine a true positive dataset of spear phishing, spam, and normal phishing emails from Symantec's enterprise email scanning service. We then present a model to detect spear phishing emails sent to employees of 14 international organizations, by using social features extracted from LinkedIn. Our dataset consists of 4,742 targeted attack emails sent to 2,434 victims, and 9,353 non targeted attack emails sent to 5,912 non victims; and publicly available information from their LinkedIn profiles. We applied various machine learning algorithms to this labeled data, and achieved an overall maximum accuracy of 97.76% in identifying spear phishing emails. We used a combination of social features from LinkedIn profiles, and stylometric features extracted from email subjects, bodies, and attachments. However, we achieved a slightly better accuracy of 98.28% without the social features. Our analysis revealed that social features extracted from LinkedIn do not help in identifying spear phishing emails. To the best of our knowledge, this is one of the first attempts to make use of a combination of stylometric features extracted from emails, and social features extracted from an online social network to detect targeted spear phishing emails.Comment: Detection of spear phishing using social media feature

    Intelligent Security for Phishing Online using Adaptive Neuro Fuzzy Systems

    Get PDF
    Anti-phishing detection solutions employed in industry use blacklist-based approaches to achieve low false-positive rates, but blacklist approaches utilizes website URLs only. This study analyses and combines phishing emails and phishing web-forms in a single framework, which allows feature extraction and feature model construction. The outcome should classify between phishing, suspicious, legitimate and detect emerging phishing attacks accurately. The intelligent phishing security for online approach is based on machine learning techniques, using Adaptive Neuro-Fuzzy Inference System and a combination sources from which features are extracted. An experiment was performed using two-fold cross validation method to measure the system’s accuracy. The intelligent phishing security approach achieved a higher accuracy. The finding indicates that the feature model from combined sources can detect phishing websites with a higher accuracy. This paper contributes to phishing field a combined feature which sources in a single framework. The implication is that phishing attacks evolve rapidly; therefore, regular updates and being ahead of phishing strategy is the way forward

    CEAI: CCM based Email Authorship Identification Model

    Full text link
    In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based content features. It is observed that the use of such features in the authorship identification process has a positive impact on the accuracy of the authorship identification task. We performed experiments to justify our arguments and compared the results with other base line models. Experimental results reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25 authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5% accuracy has been achieved on authors' constructed real email dataset. The results on Enron dataset have been achieved on quite a large number of authors as compared to the models proposed by Iqbal et al. [1, 2]

    Intelligent Detection for Cyber Phishing Attacks using Fuzzy rule-Based Systems

    Get PDF
    Cyber phishing attacks are increasing rapidly, causing the world economy monetary losses. Although various phishing detections have been proposed to prevent phishing, there is still a lack of accuracy such as false positives and false negatives causing inadequacy in online transactions. This study constructs a fuzzy rule model utilizing combined features based on a fuzzy inference system to tackle the foreseen inaccuracy in online transactions. The importance of the intelligent detection of cyber phishing is to discriminate emerging phishing websites with a higher accuracy. The experimental results achieved an excellent accuracy compared to the reported results in the field, which demonstrates the effectiveness of the fuzzy rule model and the feature-set. The findings indicate that the new approach can be used to discriminate between phishing and legitimate websites. This paper contributes by constructing a fuzzy rule model using a combined effective feature-set that has shown an excellent performance. Phishing deceptions evolve rapidly and should therefore be updated regularly to keep ahead with the changes

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Spear Phishing Attack Detection

    Get PDF
    This thesis addresses the problem of identifying email spear phishing attacks, which are indicative of cyber espionage. Spear phishing consists of targeted emails sent to entice a victim to open a malicious file attachment or click on a malicious link that leads to a compromise of their computer. Current detection methods fail to detect emails of this kind consistently. The SPEar phishing Attack Detection system (SPEAD) is developed to analyze all incoming emails on a network for the presence of spear phishing attacks. SPEAD analyzes the following file types: Windows Portable Executable and Common Object File Format (PE/COFF), Adobe Reader, and Microsoft Excel, Word, and PowerPoint. SPEAD\u27s malware detection accuracy is compared against five commercially-available email anti-virus solutions. Finally, this research quantifies the time required to perform this detection with email traffic loads emulating an Air Force base network. Results show that SPEAD outperforms the anti-virus products in PE/COFF malware detection with an overall accuracy of 99.68% and an accuracy of 98.2% where new malware is involved. Additionally, SPEAD is comparable to the anti-virus products when it comes to the detection of new Adobe Reader malware with a rate of 88.79%. Ultimately, SPEAD demonstrates a strong tendency to focus its detection on new malware, which is a rare and desirable trait. Finally, after less than 4 minutes of sustained maximum email throughput, SPEAD\u27s non-optimized configuration exhibits one-hour delays in processing files and links

    A novel hybrid approach of SVM combined with NLP and probabilistic neural network for email phishing

    Get PDF
    Phishing attacks are one of the slanting cyber-attacks that apply socially engineered messages that are imparted to individuals from expert hackers going for tricking clients to uncover their delicate data, the most mainstream correspondence channel to those messages is through clients' emails. Phishing has turned into a generous danger for web clients and a noteworthy reason for money related misfortunes. Therefore, different arrangements have been created to handle this issue. Deceitful emails, also called phishing emails, utilize a scope of impact strategies to convince people to react, for example, promising a fiscal reward or summoning a feeling of criticalness. Regardless of far reaching alerts and intends to instruct clients to distinguish phishing sends, these are as yet a pervasive practice and a worthwhile business. The creators accept that influence, as a style of human correspondence intended to impact others, has a focal job in fruitful advanced tricks. Cyber criminals have ceaselessly propelling their techniques for assault. The current strategies to recognize the presence of such malevolent projects and to keep them from executing are static, dynamic and hybrid analysis. In this work we are proposing a hybrid methodology for phishing detection incorporating feature extraction and classification of the mails using SVM. At last, alongside the chose features, the PNN characterizes the spam mails from the genuine mails with more exactness and accuracy

    DETECTION OF PHISHING WEBSITES USING HYBRID MODEL

    Get PDF
    Online technologies have revolutionized the modern computing world. Thereare number of users who purchase products online and make payment through variouswebsites. There are multiple websites who ask user to provide sensitive data such asusername, password or credit card details etc. often for malicious reasons. This type ofwebsite is known as phishing website. The phishing website can be detected based on someimportant characteristics like URL (Uniform Resource Locator) and Domain identity.Several approaches have been proposed for detection of phishing websites by extracting thephishing data sets criteria to classify their legitimacy. However, there is no such approachthat can provide better results to the users from phishing attacks. This paper is an attemptto contribute in that area by presenting a hybrid model for classification to detect phishingwebsites with high accuracy and less error rate
    corecore