11,723 research outputs found

    Is the Pedestrian going to Cross? Answering by 2D Pose Estimation

    Get PDF
    Our recent work suggests that, thanks to nowadays powerful CNNs, image-based 2D pose estimation is a promising cue for determining pedestrian intentions such as crossing the road in the path of the ego-vehicle, stopping before entering the road, and starting to walk or bending towards the road. This statement is based on the results obtained on non-naturalistic sequences (Daimler dataset), i.e. in sequences choreographed specifically for performing the study. Fortunately, a new publicly available dataset (JAAD) has appeared recently to allow developing methods for detecting pedestrian intentions in naturalistic driving conditions; more specifically, for addressing the relevant question is the pedestrian going to cross? Accordingly, in this paper we use JAAD to assess the usefulness of 2D pose estimation for answering such a question. We combine CNN-based pedestrian detection, tracking and pose estimation to predict the crossing action from monocular images. Overall, the proposed pipeline provides new state-of-the-art results.Comment: This is a paper presented in IEEE Intelligent Vehicles Symposium (IEEE IV 2018

    driver pedestrian interaction under different road environments

    Get PDF
    Abstract The objective of the present study was to analyze the drivers' behavior while approaching pedestrian crossings under different driver – pedestrian interaction conditions and to assess the effectiveness of Advanced Driving Assistance Systems (ADASs) for pedestrian detection among several road environments. Three different road environments were implemented in a fixed-base driving simulator: urban road, sub – urban road and rural road. Several driver – pedestrian interactions were implemented in addition to the pedestrian absence condition. The simulated ADAS provided a visual – auditive message. Forty – five participants drove the three road environments scenarios in which three pedestrian crossroads were implemented (pedestrian absence, pedestrian presence with ADAS and pedestrian presence without ADAS). Overall, 369 driver speed profiles were plotted from 150 m before each pedestrian crossroad. ADAS affected the driver behavior in the interaction conditions with Time-To-Zebraarrive 6 s). The effect of ADAS among the road environments was similar for the urban and sub – urban road, resulting in a less abrupt braking maneuver that began in advance compared to that adopted in ADAS absence condition. For the rural road, the main effect was the reaching of a lower minimum speed near the pedestrian crossing and an advanced end of braking maneuver, highlighting the ability of the driver to complete a safer and effective yielding maneuver

    Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development

    Get PDF
    Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions. We modeled the pedestrian/bicyclist limb motions in four layers: (1) the percentages of pedestrians and bicyclists who have limb motions when crossing the road; (2) the averaged action frequency and the corresponding distributions on when there are limb motions; (3) comparisons of the limb motion behavior between crossing and non-crossing cases; and (4) the effects of seasons on the limb motions when the pedestrians/bicyclists are crossing the road. The results of this study can provide empirical foundations supporting surrogate development, benefit analysis, and standardized testing of vehicular pedestrian/bicyclist detection and crash mitigation systems

    AUTOMATIC PEDESTRIAN CROSSING DETECTION AND IMPAIRMENT ANALYSIS BASED ON MOBILE MAPPING SYSTEM

    Get PDF
    Pedestrian crossing, as an important part of transportation infrastructures, serves to secure pedestrians’ lives and possessions and keep traffic flow in order. As a prominent feature in the street scene, detection of pedestrian crossing contributes to 3D road marking reconstruction and diminishing the adverse impact of outliers in 3D street scene reconstruction. Since pedestrian crossing is subject to wearing and tearing from heavy traffic flow, it is of great imperative to monitor its status quo. On this account, an approach of automatic pedestrian crossing detection using images from vehicle-based Mobile Mapping System is put forward and its defilement and impairment are analyzed in this paper. Firstly, pedestrian crossing classifier is trained with low recall rate. Then initial detections are refined by utilizing projection filtering, contour information analysis, and monocular vision. Finally, a pedestrian crossing detection and analysis system with high recall rate, precision and robustness will be achieved. This system works for pedestrian crossing detection under different situations and light conditions. It can recognize defiled and impaired crossings automatically in the meanwhile, which facilitates monitoring and maintenance of traffic facilities, so as to reduce potential traffic safety problems and secure lives and property

    Driver perception of potential pedestrian conflict

    Full text link
    The objective of this study was to provide information about drivers’ needs and preferences for the characteristics of pedestrian detection systems that would be useful to the designers of cars and of pedestrian detection systems. In this study, we varied parameters that determine a pedestrian’s path relative to a moving vehicle, and we collected subjects’ responses to determine to what extent pedestrian alerts are likely to be perceived as important in various situations. In a laboratory setting, subjects were shown video clips of a pedestrian taken from a driver’s point of view and were asked to rate how much a driver would need to monitor the pedestrian. Their subjective ratings indicated that, for pedestrians who are not moving toward the road, the subjective need to monitor pedestrians falls off sharply as a function of lateral distance from the edge of the road. The subjective need to monitor pedestrians who are crossing the road remains high even if their future path is such that by the time the vehicle crosses their path, the pedestrian has already completed crossing the road. Implications for the design of adaptive pedestrian detection systems are discussed.University of Michigan Industry Affiliation Program for Human Factors in Transportation Safetyhttp://deepblue.lib.umich.edu/bitstream/2027.42/61177/1/100984.pd

    Assessment of the Effectiveness of the Greek Implementation. VRU-TOO Deliverable 14

    Get PDF
    The work of VRU-TOO is targeted specifically at the application of ATT for reducing risk and improving comfort (e.g. minimisation of delay) for Vulnerable Road Users, namely pedestrians. To achieve this, the project operates at three levels. At the European level practical pilot implementations in three countries (U.K., Portugal and Greece) are linked with behavioural studies of the micro-level interaction of pedestrians and vehicles and the development of computer simulation models. At the National level, the appropriate Highway Authorities are consulted, according to their functions, for the pilot implementations and informed of the results. Finally, at the local level, the pilot project work is fitted into specfic local (municipality) policy contexts in all three pilot project sites. The present report focuses on the Elefsina pilot application in Greece and the relevant National and Local policy contexts are the following. At the National level, the ultimate responsibility for road safety and signal installations rests with the Ministry of Environment and Public Works. The Ministry is responsible for the adoption of standards and solutions for problems and also for a large number of actual installations, since local authorities lack the size and expertise to undertake such work on their own One of the project's aims is to provide information to the Ministry as to the suitability of the methods developed for aiding pedestrian movement, ultimately leading to a specification for its wider use. The Ministry is expecting to use the final results of the present study for possible modifications of its present standards for pedestrian controlled traffic signals. At the local level (Elefsina) the municipality has, in the past, pursued environmental improvements through pedestrianisation schemes in the city centre. At the same time it has developed a special traffic management policy, to solve a particularly serious problem of through traffic. A summary of the policy is contained in Appendix A and more details in a previous deliverable (Tillis, 1992). In the particular case of Elefsina pedestrian induced delay to through vehicular traffic, may form a key element in this policy ensuring at the same time, an incentive to divert to the existing bypass and enhancing pedestrian movement. The effectiveness of pedestrian detection techniques tested in the pilot, will provide valuable information on the future implementation of the policy. Thus, the Elefsina Pilot Project operates at the same time on three levels: It provides a basis, in combination with the other two pilot project sites, for comparing the effects of pedestrian detection on pedestrian safety and comfort at a European level. It provides information to the National authorities (Ministry of Environment and Public Works) for their standards setting, scheme design and implementation tasks. It fits into a comprehensive plan at the local level for effecting environmental improvements and enhancing pedestrian amenity and comfort at the same time. In addition, an investigation into the capabilities of pedestrian detectors to function as data collection devices, was performed. The data 'quality gap' betweenvehicular and pedestrian tr&c may be closed with the utilisation of microwave pedestrian detectors, providing a more solid foundation for the planning for total person movement through networks (vehicle occupants, public transport passengers, pedestrians). This the second deliverable issued for Elefsina and comprises of the main section which contains a description of the work undertaken, the results and a number of appendices serving as background material in support of the statements in the main text

    Trials with Microwave Detection of Vulnerable Road Users and Preliminary Empirical Modal Test. DRIVE Project V1031 Deliverable 11.

    Get PDF
    The general objective of the project is to provide a set of tools for the creation of traffic systems that enhance the safety and mobility of vulnerable road users (VRUs). This is being achieved in two ways: 1. By evaluating a number of RTI applications in signalling and junction control, in order to ascertain what benefits can be obtained for vulnerable road users by such local measures. 2. By developing a model of the traffic system that incorporates vulnerable road users as an integral part. The present workpackage, one of the last ones within the project, is intended to link the two strands together. The workpackage consists of two main parts: 1. Experiments with pedestrians and bicyclists. Two experiments were carried out, one in England (Bradford) and one in Sweden (Vijrjo), both applying microwave detectors for detection of pedestrians in a signalized intersection, but applying the detection in different ways. An observational study was carried out in Groningen (the Netherlands) to analyze bicycle/car interactions at an intersection with a cycle path. The aim of the experiment was to test the usefulness of a system giving car drivers warning in situations when a bicyclist approaches an intersection on a parallel bicycle path. 2. Reliability and validity testing of the submodels of the VRU-oriented traffic model WLCAN

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014
    • …
    corecore