46 research outputs found

    Detection of Obstacles in Monocular Image Sequences

    Get PDF
    The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 106

    Get PDF
    This bibliography lists 388 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1979
    corecore