2,355 research outputs found

    Current and Prospective Radiation Detection Systems, Screening Infrastructure and Interpretive Algorithms for the Non-Intrusive Screening of Shipping Container Cargo:A Review

    Get PDF
    The non-intrusive screening of shipping containers at national borders serves as a prominent and vital component in deterring and detecting the illicit transportation of radioactive and/or nuclear materials which could be used for malicious and highly damaging purposes. Screening systems for this purpose must be designed to efficiently detect and identify material that could be used to fabricate radiological dispersal or improvised nuclear explosive devices, while having minimal impact on the flow of cargo and also being affordable for widespread implementation. As part of current screening systems, shipping containers, offloaded from increasingly large cargo ships, are driven through radiation portal monitors comprising plastic scintillators for gamma detection and separate, typically 3He-based, neutron detectors. Such polyvinyl-toluene plastic-based scintillators enable screening systems to meet detection sensitivity standards owing to their economical manufacturing in large sizes, producing high-geometric-efficiency detectors. However, their poor energy resolution fundamentally limits the screening system to making binary “source” or “no source” decisions. To surpass the current capabilities, future generations of shipping container screening systems should be capable of rapid radionuclide identification, activity estimation and source localisation, without inhibiting container transportation. This review considers the physical properties of screening systems (including detector materials, sizes and positions) as well as the data collection and processing algorithms they employ to identify illicit radioactive or nuclear materials. The future aim is to surpass the current capabilities by developing advanced screening systems capable of characterising radioactive or nuclear materials that may be concealed within shipping containers

    Probing Intranuclear Environments at the Single-Molecule Level

    Get PDF
    Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites

    Motion around a Monopole + Ring system: I. Stability of Equatorial Circular Orbits vs Regularity of Three-dimensional Motion

    Get PDF
    We study the motion of test particles around a center of attraction represented by a monopole (with and without spheroidal deformation) surrounded by a ring, given as a superposition of Morgan & Morgan discs. We deal with two kinds of bounded orbits: (i) Equatorial circular orbits and (ii) general three-dimensional orbits. The first case provides a method to perform a linear stability analysis of these structures by studying the behavior of vertical and epicyclic frequencies as functions of the mass ratio, the size of the ring and/or the quadrupolar deformation. In the second case, we study the influence of these parameters in the regularity or chaoticity of motion. We find that there is a close connection between linear stability (or unstability) of equatorial circular orbits and regularity (or chaoticity) of the three-dimensional motion.Comment: 13 pages, 17 figures, to appear in MNRA

    Dynamic nuclear polarization at high magnetic fields in liquids

    Get PDF
    High field dynamic nuclear polarization spectrometer for liquid samples have been constructed. â–ș The field dependence of the Overhauser DNP efficiency has been measured for the first time up to 9.2 T. â–ș High DNP enhancements for liquid samples have been observed at high magnetic fields. â–ș The enhancements have been compared with results from NMRD, MD and theoretical models. â–ș Coherent and relaxation effects within fast magnetic field changes have been analyzed

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account

    The Neutron Star Zoo

    Get PDF
    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.Comment: 15 pages, 8 figure, to be published in Frontiers of Physic
    • 

    corecore