177 research outputs found

    Framework for botnet emulation and analysis

    Get PDF
    Criminals use the anonymity and pervasiveness of the Internet to commit fraud, extortion, and theft. Botnets are used as the primary tool for this criminal activity. Botnets allow criminals to accumulate and covertly control multiple Internet-connected computers. They use this network of controlled computers to flood networks with traffic from multiple sources, send spam, spread infection, spy on users, commit click fraud, run adware, and host phishing sites. This presents serious privacy risks and financial burdens to businesses and individuals. Furthermore, all indicators show that the problem is worsening because the research and development cycle of the criminal industry is faster than that of security research. To enable researchers to measure botnet connection models and counter-measures, a flexible, rapidly augmentable framework for creating test botnets is provided. This botnet framework, written in the Ruby language, enables researchers to run a botnet on a closed network and to rapidly implement new communication, spreading, control, and attack mechanisms for study. This is a significant improvement over augmenting C++ code-bases for the most popular botnets, Agobot and SDBot. Rubot allows researchers to implement new threats and their corresponding defenses before the criminal industry can. The Rubot experiment framework includes models for some of the latest trends in botnet operation such as peer-to-peer based control, fast-flux DNS, and periodic updates. Our approach implements the key network features from existing botnets and provides the required infrastructure to run the botnet in a closed environment.Ph.D.Committee Chair: Copeland, John; Committee Member: Durgin, Gregory; Committee Member: Goodman, Seymour; Committee Member: Owen, Henry; Committee Member: Riley, Georg

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    An Analysis of Pre-Infection Detection Techniques for Botnets and other Malware

    Get PDF
    Traditional techniques for detecting malware, such as viruses, worms and rootkits, rely on identifying virus-specific signature definitions within network traffic, applications or memory. Because a sample of malware is required to define an attack signature, signature detection has drawbacks when accounting for malware code mutation, has limited use in zero-day protection and is a post-infection technique requiring malware to be present on a device in order to be detected. A malicious bot is a malware variant that interconnects with other bots to form a botnet. Amongst their multiple malicious uses, botnets are ideal for launching mass Distributed Denial of Services attacks against the ever increasing number of networked devices that are starting to form the Internet of Things and Smart Cities. Regardless of topology; centralised Command & Control or distributed Peer-to-Peer, bots must communicate with their commanding botmaster. This communication traffic can be used to detect malware activity in the cloud before it can evade network perimeter defences and to trace a route back to source to takedown the threat. This paper identifies the inefficiencies exhibited by signature-based detection when dealing with botnets. Total botnet eradication relies on traffic-based detection methods such as DNS record analysis, against which malware authors have multiple evasion techniques. Signature-based detection displays further inefficiencies when located within virtual environments which form the backbone of data centre infrastructures, providing malware with a new attack vector. This paper highlights a lack of techniques for detecting malicious bot activity within such environments, proposing an architecture based upon flow sampling protocols to detect botnets within virtualised environments

    On Detection of Current and Next-Generation Botnets.

    Full text link
    Botnets are one of the most serious security threats to the Internet and its end users. A botnet consists of compromised computers that are remotely coordinated by a botmaster under a Command and Control (C&C) infrastructure. Driven by financial incentives, botmasters leverage botnets to conduct various cybercrimes such as spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks. There are three main challenges facing botnet detection. First, code obfuscation is widely employed by current botnets, so signature-based detection is insufficient. Second, the C&C infrastructure of botnets has evolved rapidly. Any detection solution targeting one botnet instance can hardly keep up with this change. Third, the proliferation of powerful smartphones presents a new platform for future botnets. Defense techniques designed for existing botnets may be outsmarted when botnets invade smartphones. Recognizing these challenges, this dissertation proposes behavior-based botnet detection solutions at three different levels---the end host, the edge network and the Internet infrastructure---from a small scale to a large scale, and investigates the next-generation botnet targeting smartphones. It (1) addresses the problem of botnet seeding by devising a per-process containment scheme for end-host systems; (2) proposes a hybrid botnet detection framework for edge networks utilizing combined host- and network-level information; (3) explores the structural properties of botnet topologies and measures network components' capabilities of large-scale botnet detection at the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet employing SMS messages as the C&C and P2P as the topology to facilitate future research on countermeasures against next-generation botnets. The dissertation makes three primary contributions. First, the detection solutions proposed utilize intrinsic and fundamental behavior of botnets and are immune to malware obfuscation and traffic encryption. Second, the solutions are general enough to identify different types of botnets, not a specific botnet instance. They can also be extended to counter next-generation botnet threats. Third, the detection solutions function at multiple levels to meet various detection needs. They each take a different perspective but are highly complementary to each other, forming an integrated botnet detection framework.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91382/1/gracez_1.pd

    An Introduction to Malware

    Get PDF

    Tracking and Mitigation of Malicious Remote Control Networks

    Full text link
    Attacks against end-users are one of the negative side effects of today’s networks. The goal of the attacker is to compromise the victim’s machine and obtain control over it. This machine is then used to carry out denial-of-service attacks, to send out spam mails, or for other nefarious purposes. From an attacker’s point of view, this kind of attack is even more efficient if she manages to compromise a large number of machines in parallel. In order to control all these machines, she establishes a "malicious remote control network", i.e., a mechanism that enables an attacker the control over a large number of compromised machines for illicit activities. The most common type of these networks observed so far are so called "botnets". Since these networks are one of the main factors behind current abuses on the Internet, we need to find novel approaches to stop them in an automated and efficient way. In this thesis we focus on this open problem and propose a general root cause methodology to stop malicious remote control networks. The basic idea of our method consists of three steps. In the first step, we use "honeypots" to collect information. A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource. This technique enables us to study current attacks on the Internet and we can for example capture samples of autonomous spreading malware ("malicious software") in an automated way. We analyze the collected data to extract information about the remote control mechanism in an automated fashion. For example, we utilize an automated binary analysis tool to find the Command & Control (C&C) server that is used to send commands to the infected machines. In the second step, we use the extracted information to infiltrate the malicious remote control networks. This can for example be implemented by impersonating as a bot and infiltrating the remote control channel. Finally, in the third step we use the information collected during the infiltration phase to mitigate the network, e.g., by shutting down the remote control channel such that the attacker cannot send commands to the compromised machines. In this thesis we show the practical feasibility of this method. We examine different kinds of malicious remote control networks and discuss how we can track all of them in an automated way. As a first example, we study botnets that use a central C&C server: We illustrate how the three steps can be implemented in practice and present empirical measurement results obtained on the Internet. Second, we investigate botnets that use a peer-to-peer based communication channel. Mitigating these botnets is harder since no central C&C server exists which could be taken offline. Nevertheless, our methodology can also be applied to this kind of networks and we present empirical measurement results substantiating our method. Third, we study fast-flux service networks. The idea behind these networks is that the attacker does not directly abuse the compromised machines, but uses them to establish a proxy network on top of these machines to enable a robust hosting infrastructure. Our method can be applied to this novel kind of malicious remote control networks and we present empirical results supporting this claim. We anticipate that the methodology proposed in this thesis can also be used to track and mitigate other kinds of malicious remote control networks

    Advances in modern botnet understanding and the accurate enumeration of infected hosts

    Get PDF
    Botnets remain a potent threat due to evolving modern architectures, inadequate remediation methods, and inaccurate measurement techniques. In response, this re- search exposes the architectures and operations of two advanced botnets, techniques to enumerate infected hosts, and pursues the scientific refinement of infected-host enu- meration data by recognizing network structures which distort measurement. This effort is motivated by the desire to reveal botnet behavior and trends for future mit- igation, methods to discover infected hosts for remediation in real time and threat assessment, and the need to reveal the inaccuracy in population size estimation when only counting IP addresses. Following an explanation of theoretical enumeration techniques, the architectures, deployment methodologies, and malicious output for the Storm and Waledac botnets are presented. Several tools developed to enumerate these botnets are then assessed in terms of performance and yield. Finally, this study documents methods that were developed to discover the boundaries and impact of NAT and DHCP blocks in network populations along with a footprint measurement based on relative entropy which better describes how uniformly infections communi- cate through their IP addresses. Population data from the Waledac botnet was used to evaluate these techniqu
    • …
    corecore