543 research outputs found

    Identifying safe intersection design through unsupervised feature extraction from satellite imagery

    Get PDF
    The World Health Organization has listed the design of safer intersections as a key intervention to reduce global road trauma. This article presents the first study to systematically analyze the design of all intersections in a large country, based on aerial imagery and deep learning. Approximately 900,000 satellite images were downloaded for all intersections in Australia and customized computer vision techniques emphasized the road infrastructure. A deep autoencoder extracted high-level features, including the intersection's type, size, shape, lane markings, and complexity, which were used to cluster similar designs. An Australian telematics data set linked infrastructure design to driving behaviors captured during 66 million kilometers of driving. This showed more frequent hard acceleration events (per vehicle) at four- than three-way intersections, relatively low hard deceleration frequencies at T-intersections, and consistently low average speeds on roundabouts. Overall, domain-specific feature extraction enabled the identification of infrastructure improvements that could result in safer driving behaviors, potentially reducing road trauma.Comment: 16 pages, 10 figures. Computer-Aided Civil and Infrastructure Engineering (2020

    Road Redesign Technique Achieving Enhanced Road Safety by Inpainting with a Diffusion Model

    Full text link
    Road infrastructure can affect the occurrence of road accidents. Therefore, identifying roadway features with high accident probability is crucial. Here, we introduce image inpainting that can assist authorities in achieving safe roadway design with minimal intervention in the current roadway structure. Image inpainting is based on inpainting safe roadway elements in a roadway image, replacing accident-prone (AP) features by using a diffusion model. After object-level segmentation, the AP features identified by the properties of accident hotspots are masked by a human operator and safe roadway elements are inpainted. With only an average time of 2 min for image inpainting, the likelihood of an image being classified as an accident hotspot drops by an average of 11.85%. In addition, safe urban spaces can be designed considering human factors of commuters such as gaze saliency. Considering this, we introduce saliency enhancement that suggests chrominance alteration for a safe road view.Comment: 9 Pages, 6 figures, 4 table

    Safety-critical scenarios and virtual testing procedures for automated cars at road intersections

    Get PDF
    This thesis addresses the problem of road intersection safety with regard to a mixed population of automated vehicles and non-automated road users. The work derives and evaluates safety-critical scenarios at road junctions, which can pose a particular safety problem involving automated cars. A simulation and evaluation framework for car-to-car accidents is presented and demonstrated, which allows examining the safety performance of automated driving systems within those scenarios. Given the recent advancements in automated driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual testing environments or on real-world test tracks. Since it is unrealistic to cover all possible combinations of traffic situations and environment conditions, the challenge is to find the key driving situations to be evaluated at junctions. Against this background, a novel method to derive critical pre-crash scenarios from historical car accident data is presented. It employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1,056 junction crashes in the UK, which were exported from the in-depth On-the-Spot database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. As a follow-up to the scenario generation, the thesis further presents a novel, modular framework to transfer the derived collision scenarios to a sub-microscopic traffic simulation environment. The software CarMaker is used with MATLAB/Simulink to simulate realistic models of vehicles, sensors and road environments and is combined with an advanced Monte Carlo method to obtain a representative set of parameter combinations. The analysis of different safety performance indicators computed from the simulation outputs reveals collision and near-miss probabilities for selected scenarios. The usefulness and applicability of the simulation and evaluation framework is demonstrated for a selected junction scenario, where the safety performance of different in-vehicle collision avoidance systems is studied. The results show that the number of collisions and conflicts were reduced to a tenth when adding a crossing and turning assistant to a basic forward collision avoidance system. Due to its modular architecture, the presented framework can be adapted to the individual needs of future users and may be enhanced with customised simulation models. Ultimately, the thesis leads to more efficient workflows when virtually testing automated driving at intersections, as a complement to field operational tests on public roads

    AUTOMATIC OBJECT-ORIENTED ROUNDABOUTS EXTRCTION FROM HIGH RESOLUTION MULTISPECTRAL IMAGES

    Get PDF

    A Survey on Datasets for Decision-making of Autonomous Vehicle

    Full text link
    Autonomous vehicles (AV) are expected to reshape future transportation systems, and decision-making is one of the critical modules toward high-level automated driving. To overcome those complicated scenarios that rule-based methods could not cope with well, data-driven decision-making approaches have aroused more and more focus. The datasets to be used in developing data-driven methods dramatically influences the performance of decision-making, hence it is necessary to have a comprehensive insight into the existing datasets. From the aspects of collection sources, driving data can be divided into vehicle, environment, and driver related data. This study compares the state-of-the-art datasets of these three categories and summarizes their features including sensors used, annotation, and driving scenarios. Based on the characteristics of the datasets, this survey also concludes the potential applications of datasets on various aspects of AV decision-making, assisting researchers to find appropriate ones to support their own research. The future trends of AV dataset development are summarized
    • …
    corecore