1,939 research outputs found

    Computational Methods for Sequencing and Analysis of Heterogeneous RNA Populations

    Get PDF
    Next-generation sequencing (NGS) and mass spectrometry technologies bring unprecedented throughput, scalability and speed, facilitating the studies of biological systems. These technologies allow to sequence and analyze heterogeneous RNA populations rather than single sequences. In particular, they provide the opportunity to implement massive viral surveillance and transcriptome quantification. However, in order to fully exploit the capabilities of NGS technology we need to develop computational methods able to analyze billions of reads for assembly and characterization of sampled RNA populations. In this work we present novel computational methods for cost- and time-effective analysis of sequencing data from viral and RNA samples. In particular, we describe: i) computational methods for transcriptome reconstruction and quantification; ii) method for mass spectrometry data analysis; iii) combinatorial pooling method; iv) computational methods for analysis of intra-host viral populations

    Methods for Viral Intra-Host and Inter-Host Data Analysis for Next-Generation Sequencing Technologies

    Get PDF
    The deep coverage offered by next-generation sequencing (NGS) technology has facilitated the reconstruction of intra-host RNA viral populations at an unprecedented level of detail. However, NGS data requires sophisticated analysis dealing with millions of error-prone short reads. This dissertation will first review the challenges and methods for viral NGS genomic data analysis in the NGS era. Second, it presents a software tool CliqueSNV for inferring viral quasispecies based on extracting pairs of statistically linked mutations from noisy reads, which effectively reduces sequencing noise and enables identifying minority haplotypes with a frequency below the sequencing error rate. Finally, the dissertation describes algorithms VOICE and MinDistB for inference of relatedness between viral samples, identification of transmission clusters, and sources of infection

    Bioinformatics Tools for RNA-seq Data Analysis

    Get PDF
    RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. The availability of RNA-seq data encouraged computational biologists to develop algorithms to process the data in a statistically disciplinary manner to generate biologically meaningful results. Clustering viral sequences allows us to characterize the composition and structure of intrahost and interhost viral populations, which play a crucial role in disease progression and epidemic spread. In this research, we propose and validate a new entropy-based method for clustering aligned viral sequences considered as categorical data. The method finds a homogeneous clustering by minimizing information entropy rather than the distance between sequences in the same cluster. Moreover in this research, we present a novel pathway analysis method based on Expectation-Maximization (EM) algorithm to study the enzyme expression and pathway activity using meta-transcriptomic data. We will also discuss our approaches to generating unique gene signatures to understand the role of sensory nerve interference in the anti-melanoma immune response and study the racial disparity in Triple-negative breast cancer. Finally, we present our method to detect the retained introns in RNA-seq data to develop a vaccine against cancer having p53 mutations. In summary, this research provides novel approaches to exploring RNA-seq data and their application to real-world biological research

    J Infect Dis

    Get PDF
    Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections are associated with unsafe injection practices, drug diversion, and other exposures to blood and are difficult to detect and investigate. Here, we developed and validated a simple approach for molecular detection of HCV transmissions in outbreak settings. We obtained sequences from the HCV hypervariable region 1 (HVR1), using end-point limiting-dilution (EPLD) technique, from 127 cases involved in 32 epidemiologically defined HCV outbreaks and 193 individuals with unrelated HCV strains. We compared several types of genetic distances and calculated a threshold, using minimal Hamming distances, that identifies transmission clusters in all tested outbreaks with 100% accuracy. The approach was also validated on sequences obtained using next-generation sequencing from HCV strains recovered from 239 individuals, and findings showed the same accuracy as that for EPLD. On average, the nucleotide diversity of the intrahost population was 6.2 times greater in the source case than in any incident case, allowing the correct detection of transmission direction in 8 outbreaks for which source cases were known. A simple and accurate distance-based approach developed here for detecting HCV transmissions streamlines molecular investigation of outbreaks, thus improving the public health capacity for rapid and effective control of hepatitis C.CC999999/Intramural CDC HHS/United States2016-11-22T00:00:00Z26582955PMC511947

    Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies : a short review

    Get PDF
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts

    Food Microbiol

    Get PDF
    Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.CC999999/Intramural CDC HHS/United States2019-06-01T00:00:00Z30621881PMC64922637184vault:3458

    Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections.

    Get PDF
    Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential

    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires

    Full text link
    The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity in order to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic and (iv) machine learning methods applied to dissect, quantify and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology towards coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.Comment: 27 pages, 2 figure

    Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model

    Get PDF
    Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes
    corecore