28 research outputs found

    Detection of empty hazelnuts from fully developed nuts by impact acoustics

    Get PDF
    Shell-kernel weight ratio is the main determinate of quality and price of hazelnuts. Empty hazelnuts and nuts containing undeveloped kernels may also contain mycotoxin producing molds, which can cause cancer. A prototype system was set up to detect empty hazelnuts by dropping them onto a steel plate and processing the acoustic signal generated when kernels impact the plate. The acoustic signal was processed by five different methods: 1) modeling of the signal in the time domain, 2) computing time domain signal variances in short time windows, 3) analysis of the frequency spectra magnitudes, 4) maximum amplitude values in short time windows, and 5) line spectral frequencies (LSFs). Support Vector Machines (SVMs) were used to select a subset of features and perform classification. 98% of fully developed kernels and 97% of empty kernels were correctly classified

    A signal representation approach for discrimination between full and empty hazelnuts

    Get PDF
    We apply a sparse signal representation approach to impact acoustic signals to discriminate between empty and full hazelnuts. The impact acoustic signals are recorded by dropping the hazelnut shells on a metal plate. The impact signal is then approximated within a given error limit by choosing codevectors from a special dictionary. This dictionary was generated from sub-dictionaries that are individually generated for the impact signals corresponding to empty and full hazelnut. The number of codevectors selected from each sub-dictionary and the approximation error within initial codevectors are used as classification features and fed to a Linear Discriminant Analysis (LDA). We also compare this algorithm with a baseline approach. This baseline approach uses features which describe the time and frequency characteristics of the given signal that were previously used for empty and full hazelnut separation. Classification accuracies of 98.3% and 96.8% were achieved by the proposed approach and base algorithm respectively. The results we obtained show that sparse signal representation strategy can be used as an alternative classification method for undeveloped hazelnut separation with higher accuracies. © 2007 EURASIP

    Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    Full text link

    Identification of damaged wheat kernels and cracked-shell hazelnuts with impact acoustics time-frequency patterns

    Get PDF
    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with a PC-based data acquisition system. These signals were segmented with a flexible local discriminant bases (F-LDB) procedure in the time-frequency plane to extract discriminative patterns between damaged and undamaged food kernels. The F-LDB procedure requires no prior knowledge of the relevant time or frequency indices of the impact acoustics signals for classification. The method automatically finds all crucial time-frequency indices from the training data by combining local cosine packet analysis and a frequency axis clustering approach, which supports individual time and frequency band adaptation. Discriminant features are extracted from the adaptively segmented acoustic signal, sorted according to a Fisher class separability criterion, post-processed by principal component analysis, and fed to a linear discriminant classifier. Experimental results establish the superior performance of the proposed approach when compared to prior techniques reported in the literature or used in the field. The new approach separated damaged wheat kernels (IDK, pupal, and scab) from undamaged wheat kernels with 96%, 82%, and 94% accuracy, respectively. It also separated cracked-shell hazelnuts from those with undamaged shells with 97.1% accuracy. The adaptation capability of the algorithm to the time-frequency patterns of signals makes it a universal method for food kernel inspection that can resist the impact acoustic variability between different kernel and damage types. 2008 American Society of Agricultural and Biological Engineers

    Signal and image processing algorithms for agricultural applications

    Get PDF
    Cataloged from PDF version of article.Medical studies indicate that acrylamide causes cancer in animals and certain doses of acrylamide are toxic to the nervous system of both animals and humans. Acrylamide is produced in carbohydrate foods prepared at high temperatures such as fried potatoes. For this reason, it is crucial for human health to quantitatively measure the amount of acrylamide formed as a result of prolonged cooking at high temperatures. In this thesis, a correlation is demonstrated between measured acrylamide concentrations and NABY (Normalized Area of Brownish Yellow regions) values estimated from surface color properties of fried potato images using a modified form of the k-means algorithm. Same method is used to estimate acrylamide levels of roasted coffee beans. The proposed method seems to be a promising approach for the estimation of acrylamide levels and can find applications in industrial systems. The quality and price of hazelnuts are mainly determined by the ratio of shell weight to kernel weight. Due to a number of physiological and physical disorders, hazelnuts may grow without fully developed kernels. We previously proposed a prototype system which detects empty hazelnuts by dropping them onto a steel plate and processing the acoustic signal generated when kernels hit the plate. In that study, feature vectors describing time and frequency nature of the impact sound were extracted from the acoustic signal and classified using Support Vector Machines. In the second part of this thesis, a feature domain post-processing method based on vector median/mean filtering is shown to further increase these classification results.Dülek, BerkanM.S

    Detection of underdeveloped hazelnuts from fully developed nuts by impact acoustics

    Get PDF
    Shell-to-kernel weight ratio is a vital measurement of quality in hazelnuts as it helps to identify nuts that have underdeveloped kernels. Nuts containing underdeveloped kernels may contain mycotoxin-producing molds, which are linked to cancer and are heavily regulated in international trade. A prototype system was set up to detect underdeveloped hazelnuts by dropping them onto a steel plate and recording the acoustic signal that was generated when a kernel hit the plate. A feature vector comprising line spectral frequencies and time-domain maxima that describes both the time and frequency nature of the impact sound was extracted from each sound signal and used to classify each nut by a support-vector machine. Experimental studies demonstrated accuracies as high as 97% in classifying hazelnuts with underdeveloped kernels

    NMR measurements for hazelnuts classification

    Get PDF
    2016 - 2017In this work, a method for the quality detection of the in-shell hazelnuts, based on the low field NMR, has been proposed. The aim of the work is to develop an in-line classification system able to detect the hidden defects of the hazelnuts. After an analysis of the hazelnut oil, carried out in order to verify the applicability of the NMR techniques and to determine some configuration parameters, the influence factors that affect these measurements in presence of solid sample instead of liquids have been analyzed. Then, the measurement algorithms were defined. The proposed classification procedure is based on the CPMG sequence and the analysis of the transverse relaxation decay. The procedure includes three different steps in which different features are detected: moisture content, kernel development and mold development. These quality parameters have been evaluated .analyzing the maximum amplitude and the second echo peak of the CPMG signal, and the T2 distribution of the relaxation decay. In order to assure high repeatability and low execution time, special attention has been put in the definition of the data processing. Finally, the realized measurement system has been characterized in terms of classification performance. In this phase, because of the reduced size of the test sample (especially for the hazelnuts with defects) a resampling method, the bootstrap, was used. [edited by Author]XVI n.s. (XXX ciclo

    Classification of agricultural kernels using impact acoustic signal processing

    Get PDF
    Cataloged from PDF version of article.The quality is the main factor that directly affects the price for many agricultural produces. The quality depends on different properties of the produce. Most important property is associated with health of consumers. Other properties mostly depend on the type of concerned vegetable. For instance, emptiness is important for hazelnuts while openness is crucial for the pistachio nuts. Therefore, the agricultural produces should be separated according to their quality to maintain the consumers health and increase the price of the produce in international trades. Current approaches are mostly based on invasive chemical analysis of some selected food items or sorting food items according to their color. Although chemical analysis gives the most accurate results, it is impossible to analyze large quantities of food items. The impact sound signal processing can be used to classify these produces according to their quality. These methods are inexpensive, noninvasive and most of all they can be applied in real-time to process large amount of food. Several signal processing methods for extracting impact sound features are proposed to classify the produces according to their quality. These methods are including time and frequency domain methods. Several time and frequency domain methods including Weibull parameters, maximum points and variances in time windows, DFT (Discrete Fourier Transform) coefficients around the maximum spectral points etc. are used to extract the features from the impact sound. In this study, we used hazelnut and wheat kernel impact sounds. The success rate over 90% is achieved for all types produces.Onaran, İbrahimM.S

    A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    Get PDF
    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials

    Radiation Effects in Materials

    Get PDF
    The study of radiation effects has developed as a major field of materials science from the beginning, approximately 70 years ago. Its rapid development has been driven by two strong influences. The properties of the crystal defects and the materials containing them may then be studied. The types of radiation that can alter structural materials consist of neutrons, ions, electrons, gamma rays or other electromagnetic waves with different wavelengths. All of these forms of radiation have the capability to displace atoms/molecules from their lattice sites, which is the fundamental process that drives the changes in all materials. The effect of irradiation on materials is fixed in the initial event in which an energetic projectile strikes a target. The book is distributed in four sections: Ionic Materials; Biomaterials; Polymeric Materials and Metallic Materials
    corecore