33 research outputs found

    Electromyography-Based Control of Lower Limb Prostheses: A Systematic Review

    Get PDF
    Most amputations occur in lower limbs and despite improvements in prosthetic technology, no commercially available prosthetic leg uses electromyography (EMG) information as an input for control. Efforts to integrate EMG signals as part of the control strategy have increased in the last decade. In this systematic review, we summarize the research in the field of lower limb prosthetic control using EMG. Four different online databases were searched until June 2022: Web of Science, Scopus, PubMed, and Science Direct. We included articles that reported systems for controlling a prosthetic leg (with an ankle and/or knee actuator) by decoding gait intent using EMG signals alone or in combination with other sensors. A total of 1,331 papers were initially assessed and 121 were finally included in this systematic review. The literature showed that despite the burgeoning interest in research, controlling a leg prosthesis using EMG signals remains challenging. Specifically, regarding EMG signal quality and stability, electrode placement, prosthetic hardware, and control algorithms, all of which need to be more robust for everyday use. In the studies that were investigated, large variations were found between the control methodologies, type of research participant, recording protocols, assessments, and prosthetic hardware

    EMG-driven control in lower limb prostheses: a topic-based systematic review

    Get PDF
    Background The inability of users to directly and intuitively control their state-of-the-art commercial prosthesis contributes to a low device acceptance rate. Since Electromyography (EMG)-based control has the potential to address those inabilities, research has flourished on investigating its incorporation in microprocessor-controlled lower limb prostheses (MLLPs). However, despite the proposed benefits of doing so, there is no clear explanation regarding the absence of a commercial product, in contrast to their upper limb counterparts. Objective and methodologies This manuscript aims to provide a comparative overview of EMG-driven control methods for MLLPs, to identify their prospects and limitations, and to formulate suggestions on future research and development. This is done by systematically reviewing academical studies on EMG MLLPs. In particular, this review is structured by considering four major topics: (1) type of neuro-control, which discusses methods that allow the nervous system to control prosthetic devices through the muscles; (2) type of EMG-driven controllers, which defines the different classes of EMG controllers proposed in the literature; (3) type of neural input and processing, which describes how EMG-driven controllers are implemented; (4) type of performance assessment, which reports the performance of the current state of the art controllers. Results and conclusions The obtained results show that the lack of quantitative and standardized measures hinders the possibility to analytically compare the performances of different EMG-driven controllers. In relation to this issue, the real efficacy of EMG-driven controllers for MLLPs have yet to be validated. Nevertheless, in anticipation of the development of a standardized approach for validating EMG MLLPs, the literature suggests that combining multiple neuro-controller types has the potential to develop a more seamless and reliable EMG-driven control. This solution has the promise to retain the high performance of the currently employed non-EMG-driven controllers for rhythmic activities such as walking, whilst improving the performance of volitional activities such as task switching or non-repetitive movements. Although EMG-driven controllers suffer from many drawbacks, such as high sensitivity to noise, recent progress in invasive neural interfaces for prosthetic control (bionics) will allow to build a more reliable connection between the user and the MLLPs. Therefore, advancements in powered MLLPs with integrated EMG-driven control have the potential to strongly reduce the effects of psychosomatic conditions and musculoskeletal degenerative pathologies that are currently affecting lower limb amputees

    Improving Intelligence of Robotic Lower-Limb Prostheses to Enhance Mobility for Individuals with Limb Loss

    Get PDF
    The field of wearable robotics is an emerging field that seeks to create smarter and intuitive devices that can assist users improve their overall quality of life. Specifically, individuals with lower limb amputation tend to have significantly impaired mobility and asymmetric gait patterns that result in increased energy expenditure than able-bodied individuals over a variety of tasks. Unfortunately, most of the commercial devices are passive and lack the ability to easily adapt to changing environmental contexts. Powered prostheses have shown promise to help restore the necessary power needed to walk in common ambulatory tasks. However, there is a need to infer/detect the user's movement to appropriately provide seamless and natural assistance. To achieve this behavior, a better understanding is required of adding intelligence to powered prostheses. This dissertation focuses on three key research objectives: 1) developing and enhancing offline intent recognition systems for both classification and regression tasks using embedded prosthetic mechanical sensors and machine learning, 2) deploying intelligent controllers in real-time to directly modulate assistive torque in a knee and ankle prosthetic device, and 3) quantifying the biomechanical and clinical effects of a powered prosthesis compared to a passive device. The findings conducted show improvement in developing powered prostheses to better enhance mobility for individuals with transfemoral amputation and show a step forward towards clinical acceptance.Ph.D

    Real-time Hybrid Locomotion Mode Recognition for Lower-limb Wearable Robots

    Get PDF
    Real-time recognition of locomotion-related activities is a fundamental skill that the controller of lower-limb wearable robots should possess. Subject-specific training and reliance on electromyographic interfaces are the main limitations of existing approaches. This study presents a novel methodology for real-time locomotion mode recognition of locomotion-related activities in lower-limb wearable robotics. A hybrid classifier can distinguish among seven locomotion-related activities. First, a time-based approach classifies between static and dynamical states based on gait kinematics data. Second, an event-based fuzzy logic method triggered by foot pressure sensors operates in a subject-independent fashion on a minimal set of relevant biomechanical features to classify among dynamical modes. The locomotion mode recognition algorithm is implemented on the controller of a portable powered orthosis for hip assistance. An experimental protocol is designed to evaluate the controller performance in an out-of-lab scenario without the need for a subject-specific training. Experiments are conducted on six healthy volunteers performing locomotion-related activities at slow, normal, and fast speeds under the zero-torque and assistive mode of the orthosis. The overall accuracy rate of the controller is 99.4% over more than 10,000 steps, including seamless transitions between different modes. The experimental results show a successful subject-independent performance of the controller for wearable robots assisting locomotion-related activities

    Predicting Continuous Locomotion Modes via Multidimensional Feature Learning from sEMG

    Full text link
    Walking-assistive devices require adaptive control methods to ensure smooth transitions between various modes of locomotion. For this purpose, detecting human locomotion modes (e.g., level walking or stair ascent) in advance is crucial for improving the intelligence and transparency of such robotic systems. This study proposes Deep-STF, a unified end-to-end deep learning model designed for integrated feature extraction in spatial, temporal, and frequency dimensions from surface electromyography (sEMG) signals. Our model enables accurate and robust continuous prediction of nine locomotion modes and 15 transitions at varying prediction time intervals, ranging from 100 to 500 ms. In addition, we introduced the concept of 'stable prediction time' as a distinct metric to quantify prediction efficiency. This term refers to the duration during which consistent and accurate predictions of mode transitions are made, measured from the time of the fifth correct prediction to the occurrence of the critical event leading to the task transition. This distinction between stable prediction time and prediction time is vital as it underscores our focus on the precision and reliability of mode transition predictions. Experimental results showcased Deep-STP's cutting-edge prediction performance across diverse locomotion modes and transitions, relying solely on sEMG data. When forecasting 100 ms ahead, Deep-STF surpassed CNN and other machine learning techniques, achieving an outstanding average prediction accuracy of 96.48%. Even with an extended 500 ms prediction horizon, accuracy only marginally decreased to 93.00%. The averaged stable prediction times for detecting next upcoming transitions spanned from 28.15 to 372.21 ms across the 100-500 ms time advances.Comment: 10 pages,7 figure

    On improving control and efficiency of a portable pneumatically powered ankle-foot orthosis

    Get PDF
    Ankle foot orthoses (AFOs) are widely used as assistive and/or rehabilitation devices to correct gait of people with lower leg neuromuscular dysfunction and muscle weakness. An AFO is an external device worn on the lower leg and foot that provides mechanical assistance at the ankle joint. Active AFOs are powered devices that provide assistive torque at the ankle joint. We have previously developed the Portable Powered Ankle-Foot Orthosis (PPAFO), which uses pneumatic power via compressed CO2 to provide untethered ankle torque assistance. My dissertation work focused on the development of control strategies for the PPAFO that are robust, applicable to different gait patterns, functional in different gait modes, and energy efficient. Three studies addressing these topics are presented in this dissertation: (1) estimation of the system state during the gait cycle for actuation control; (2) gait mode recognition and control (e.g., stair and ramp descent/ascent); and (3) system analysis and improvement of pneumatic energy efficiency. Study 1 presents the work on estimating the gait state for powered AFO control. The proposed scheme is a state estimator that reliably detects gait events while using only a limited array of sensor data (ankle angle and contact forces at the toe and heel). Our approach uses cross-correlation between a window of past measurements and a learned model to estimate the configuration of the human walker, and detects gait events based on this estimate. The proposed state estimator was experimentally validated on five healthy subjects and with one subject that had neuromuscular impairment. The results highlight that this new approach reduced the root-mean-square error by up to 40% for the impaired subject and up to 49% for the healthy subjects compared to a simplistic direct event controller. Moreover, this approach was robust to perturbations due to changes in walking speed and control actuation. Study 2 proposed a gait mode recognition and control solution to identify a change in walking environment such as stair and ramp ascent/descent. Since portability is a key to the success of the PPAFO as a gait assist device, it is critical to recognize and control for multiple gait modes (i.e., level walking, stair ascent/descent and ramp ascent/descent). While manual mode switching is implemented on most devices, we propose an automatic gait mode recognition scheme by tracking the 3D position of the PPAFO from an inertial measurement unit (IMU). Experimental results indicate that the controller was able to identify the position, orientation and gait mode in real time, and properly control the actuation. The overall recognition success rate was over 97%. Study 3 addressed improving operational runtime by analyzing the system efficiency and proposing an energy harvesting and recycling scheme to save fuel. Through a systematic analysis, the overall system efficiency was determined by deriving both the system operational efficiency and the system component efficiency. An improved pneumatic operation utilized an accumulator to harvest and then recycle the exhaust energy from a previous actuation to power the subsequent actuation. The overall system efficiency was improved from 20.5% to 29.7%, a fuel savings of 31%. Work losses across pneumatic components and solutions to improve them were quantified and discussed. Future work including reducing delay in recognition, exploring faulty recognition, additional options for harvesting human energy, and learning control were proposed

    The Design, Prototype, and Testing of a Robotic Prosthetic Leg

    Get PDF
    Since antiquity, health professionals have sought ways to provide and improve prosthetic devices to ease the suffering of those living with limb loss. Mid-century modern engineering techniques, in part, developed and funded by the American industrial war effort, led to numerous innovations and standardization of mass-customized products. Followed by the Digital Revolution, we are now experiencing the roboticization of prosthetic limbs. As innovations have come and gone, some essential technologies have been forgotten or ignored. Many successful products have been commercialized, but unfortunately, they are often rationed to those who need them most. Here we present a prototype device based on many prior discoveries, utilizing commercially available parts when possible. This device has the potential to reduce the overall costs of powered robotic prosthetics, making them accessible to those with knee instability or the fear of falling. Additional benefits of this device are that it is designed to improve the kinematic and kinetic symmetry of the lower extremities, including the hips. We will design, prototype, and test this robotic prosthetic leg for feasibility and safe performance. KEYWORDS: ENGINEERING, LIMB LOSS, FEAR OF FALLING, POWERED ROBOTIC PROSTHETIC LEG, PROTOTYP

    Daily locomotion recognition and prediction: A kinematic data-based machine learning approach

    Get PDF
    More versatile, user-independent tools for recognizing and predicting locomotion modes (LMs) and LM transitions (LMTs) in natural gaits are still needed. This study tackles these challenges by proposing an automatic, user-independent recognition and prediction tool using easily wearable kinematic motion sensors for innovatively classifying several LMs (walking direction, level-ground walking, ascend and descend stairs, and ascend and descend ramps) and respective LMTs. We compared diverse state-of-the-art feature processing and dimensionality reduction methods and machine-learning classifiers to find an effective tool for recognition and prediction of LMs and LMTs. The comparison included kinematic patterns from 10 able-bodied subjects. The more accurate tools were achieved using min-max scaling [-1; 1] interval and 'mRMR plus forward selection' algorithm for feature normalization and dimensionality reduction, respectively, and Gaussian support vector machine classifier. The developed tool was accurate in the recognition (accuracy >99% and >96%) and prediction (accuracy >99% and >93%) of daily LMs and LMTs, respectively, using exclusively kinematic data. The use of kinematic data yielded an effective recognition and prediction tool, predicting the LMs and LMTs one-step-ahead. This timely prediction is relevant for assistive devices providing personalized assistance in daily scenarios. The kinematic data-based machine learning tool innovatively addresses several LMs and LMTs while allowing the user to self-select the leading limb to perform LMTs, ensuring a natural gait.This work was supported in part by the Fundação para a Ciência e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015 and SFRH/BD/147878/2019, by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs under Grant NORTE-01-0145-FEDER-030386, and through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941
    corecore