692 research outputs found

    Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach

    Full text link
    The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    Fundamental structures of dynamic social networks

    Get PDF
    Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.Comment: Main Manuscript: 16 pages, 4 figures. Supplementary Information: 39 pages, 34 figure

    Computational methods to predict and enhance decision-making with biomedical data.

    Get PDF
    The proposed research applies machine learning techniques to healthcare applications. The core ideas were using intelligent techniques to find automatic methods to analyze healthcare applications. Different classification and feature extraction techniques on various clinical datasets are applied. The datasets include: brain MR images, breathing curves from vessels around tumor cells during in time, breathing curves extracted from patients with successful or rejected lung transplants, and lung cancer patients diagnosed in US from in 2004-2009 extracted from SEER database. The novel idea on brain MR images segmentation is to develop a multi-scale technique to segment blood vessel tissues from similar tissues in the brain. By analyzing the vascularization of the cancer tissue during time and the behavior of vessels (arteries and veins provided in time), a new feature extraction technique developed and classification techniques was used to rank the vascularization of each tumor type. Lung transplantation is a critical surgery for which predicting the acceptance or rejection of the transplant would be very important. A review of classification techniques on the SEER database was developed to analyze the survival rates of lung cancer patients, and the best feature vector that can be used to predict the most similar patients are analyzed

    A Dynamic Embedding Model of the Media Landscape

    Full text link
    Information about world events is disseminated through a wide variety of news channels, each with specific considerations in the choice of their reporting. Although the multiplicity of these outlets should ensure a variety of viewpoints, recent reports suggest that the rising concentration of media ownership may void this assumption. This observation motivates the study of the impact of ownership on the global media landscape and its influence on the coverage the actual viewer receives. To this end, the selection of reported events has been shown to be informative about the high-level structure of the news ecosystem. However, existing methods only provide a static view into an inherently dynamic system, providing underperforming statistical models and hindering our understanding of the media landscape as a whole. In this work, we present a dynamic embedding method that learns to capture the decision process of individual news sources in their selection of reported events while also enabling the systematic detection of large-scale transformations in the media landscape over prolonged periods of time. In an experiment covering over 580M real-world event mentions, we show our approach to outperform static embedding methods in predictive terms. We demonstrate the potential of the method for news monitoring applications and investigative journalism by shedding light on important changes in programming induced by mergers and acquisitions, policy changes, or network-wide content diffusion. These findings offer evidence of strong content convergence trends inside large broadcasting groups, influencing the news ecosystem in a time of increasing media ownership concentration
    • …
    corecore