873 research outputs found

    Automatic Bright Circular Type Oil Tank Detection Using Remote Sensing Images

    Get PDF
    Automatic target detection like oil tank from satellite based remote sensing imagery is one of the important domains in many civilian and military applications. This could be used for disaster monitoring, oil leakage, etc. We present an automatic approach for detection of circular shaped bright oil tanks with high accuracy. The image is first enhanced to emphasize the bright objects using a morphological approach. Then, the enhanced image is segmented using split-and-merge segmentation technique.  Here, we introduce a knowledge base strategy based on the region removal technique and spatial relationship operation for detection of possible oil tanks from the segmented image using minimal spanning tree. Lastly, we introduce a supervised classifier, for identification of oil tanks, based on the knowledge database of large amount data of oil tanks. The uniqueness of the proposed technique is that it is useful for detection bright oil tanks from high as well as low resolution images, but the technique is always better for high-resolution imagery. We have systematically evaluated the algorithm on different satellite images like IRS – 1C, IKONOS, QuickBird and CARTOSAT – 2A. The proposed technique is detected bright structures but unable to detect the dark structure. If the oil tank structures are bright relative to the background illumination in the image then the detection accuracy by the proposed technique for the high resolution image is more than 95 per cent.Defence Science Journal, 2013, 63(3), pp.298-304, DOI:http://dx.doi.org/10.14429/dsj.63.273

    3D space intersection features extraction from Synthetic Aperture Radar images

    Get PDF
    The main purpose of this Thesis is to develop new theoretical models in order to extend the capabilities of SAR images space intersection techniques to generate three dimensional information. Furthermore, the study aims at acquiring new knowledge on SAR image interpretation through the three dimensional comprehension of the scene. The proposed methodologies allow to extend the known radargrammetric applications to vector data generation, exploiting SAR images acquired with every possible geometries. The considered geometries are points, circles, cylinders and lines. The study assesses the estimation accuracy of the features in terms of absolute and relative position and dimensions, analyzing the nowadays operational SAR sensors with a special focus on the national COSMO-SkyMed system. The proposed approach is original as it does not require the direct matching between homologous points of different images, which is a necessary step for the classical radargrammetric techniques; points belonging to the same feature, circular or linear, recognized in different images, are matched through specific models in order to estimate the dimensions and the location of the feature itself. This approach is robust with respect to the variation of the viewing angle of the input images and allows to better exploit archive data, acquired with diverse viewing geometries. The obtained results confirm the validity of the proposed theoretical approach and enable important applicative developments, especially in the Defence domain: (i) introducing original three dimensional measurement tools to support visual image interpretation; (ii) performing an advanced modelling of building counting only on SAR images; (iii) exploiting SAR images as a source for geospatial information and data; (iv) producing geospatial reference information, such as Ground Control Point, without any need for survey on the ground

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.info:eu-repo/semantics/acceptedVersio

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue

    Remote Sensing Image Scene Classification: Benchmark and State of the Art

    Full text link
    Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.Comment: This manuscript is the accepted version for Proceedings of the IEE

    Earth Observation Semantics and Data Analytics for Coastal Environmental Areas

    Get PDF
    Current satellite images provide us with detailed information about the state of our planet, as well as about our technical infrastructure and human activities. A range of already existing commercial and scientific applications try to analyze the physical content and meaning of satellite images by exploiting the data of individual, multiple or temporal sequences of images. However, what we still need today are advanced tools to automatically analyze satellite images in order to extract and understand their full content and meaning. To remedy this exploration problem, we outline a highly automated and application-adapted data-mining and content interpretation system consisting of five main components, namely Data Sources (selection and storage of relevant images), Data Model Generation (patch cutting and generation of feature vectors), Database Management System (systematic data storage), Knowledge Discovery in Databases (clustering and content labeling), and Statistical Analytics (generation of classification maps). As test sites, we selected UNESCO-protected areas in Europe that include coastal areas for monitoring and an area known in the Mediterranean Sea that contains fish cages. The analyzed areas are: the Curonian Lagoon in Lithuania and Russia, the Danube Delta in Romania, the Hardangervidda in Norway, and the Wadden Sea in the Netherlands. For these areas, we are providing the results of our image content classification system consisting of image classification maps and additional statistical analytics based on three different use cases. The first use case is the detection of wind turbines vs. boats in the Wadden Sea. The second use case is the identification of fish cages/aquaculture along the Mediterranean coast. Finally, the third use case describes the differences between beaches, dams, dunes, and tidal flats in the Danube Delta, the Wadden Sea, etc. The average classification accuracy that we obtained is ranging from 80% to 95% depending on the type of available images
    • …
    corecore