303 research outputs found

    The cost of space independence in P300-BCI spellers.

    Get PDF
    Background: Though non-invasive EEG-based Brain Computer Interfaces (BCI) have been researched extensively over the last two decades, most designs require control of spatial attention and/or gaze on the part of the user. Methods: In healthy adults, we compared the offline performance of a space-independent P300-based BCI for spelling words using Rapid Serial Visual Presentation (RSVP), to the well-known space-dependent Matrix P300 speller. Results: EEG classifiability with the RSVP speller was as good as with the Matrix speller. While the Matrix speller’s performance was significantly reliant on early, gaze-dependent Visual Evoked Potentials (VEPs), the RSVP speller depended only on the space-independent P300b. However, there was a cost to true spatial independence: the RSVP speller was less efficient in terms of spelling speed. Conclusions: The advantage of space independence in the RSVP speller was concomitant with a marked reduction in spelling efficiency. Nevertheless, with key improvements to the RSVP design, truly space-independent BCIs could approach efficiencies on par with the Matrix speller. With sufficiently high letter spelling rates fused with predictive language modelling, they would be viable for potential applications with patients unable to direct overt visual gaze or covert attentional focus

    Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends

    Get PDF
    Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI research projects are being carried globally to interface computer with human using EEG for useful operations in both healthy and locked persons. Although several methods have been used to enhance the BCI performance in terms of signal processing, noise reduction, accuracy, information transfer rate, and user acceptability, the effective BCI system is still in the verge of development. So far, various modifications on single BCI systems as well as hybrid are done and the hybrid BCIs have shown increased but insufficient performance. Therefore, more efficient hybrid BCI models are still under the investigation by different research groups. In this review chapter, single BCI systems are briefly discussed and more detail discussions on hybrid BCIs, their modifications, operations, and performances with comparisons in terms of signal processing approaches, applications, limitations, and future scopes are presented

    User variations in attention and brain-computer interface performance

    Get PDF

    Rapid Communication with a “P300” Matrix Speller Using Electrocorticographic Signals (ECoG)

    Get PDF
    A brain–computer interface (BCI) can provide a non-muscular communication channel to severely disabled people. One particular realization of a BCI is the P300 matrix speller that was originally described by Farwell and Donchin (1988). This speller uses event-related potentials (ERPs) that include the P300 ERP. All previous online studies of the P300 matrix speller used scalp-recorded electroencephalography (EEG) and were limited in their communication performance to only a few characters per minute. In our study, we investigated the feasibility of using electrocorticographic (ECoG) signals for online operation of the matrix speller, and determined associated spelling rates. We used the matrix speller that is implemented in the BCI2000 system. This speller used ECoG signals that were recorded from frontal, parietal, and occipital areas in one subject. This subject spelled a total of 444 characters in online experiments. The results showed that the subject sustained a rate of 17 characters/min (i.e., 69 bits/min), and achieved a peak rate of 22 characters/min (i.e., 113 bits/min). Detailed analysis of the results suggests that ERPs over visual areas (i.e., visual evoked potentials) contribute significantly to the performance of the matrix speller BCI system. Our results also point to potential reasons for the apparent advantages in spelling performance of ECoG compared to EEG. Thus, with additional verification in more subjects, these results may further extend the communication options for people with serious neuromuscular disabilities

    Past, Present, and Future of EEG-Based BCI Applications

    Get PDF
    An electroencephalography (EEG)-based brain–computer interface (BCI) is a system that provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI applications have initially been developed for medical purposes, with the aim of facilitating the return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also gained increasing significance in the non-medical domain, improving the life of healthy people, for instance, by making it more efficient, collaborative and helping develop themselves. The objective of this review is to give a systematic overview of the literature on EEG-based BCI applications from the period of 2009 until 2019. The systematic literature review has been prepared based on three databases PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In this review, 202 publications were selected based on specific eligibility criteria. The distribution of the research between the medical and non-medical domain has been analyzed and further categorized into fields of research within the reviewed domains. In this review, the equipment used for gathering EEG data and signal processing methods have also been reviewed. Additionally, current challenges in the field and possibilities for the future have been analyzed

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-and-play’ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    Online detection of error-related potentials boosts the performance of mental typewriters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing the communication speed of brain-computer interfaces (BCIs) is a major aim of current BCI-research. The idea to automatically detect error-related potentials (ErrPs) in order to veto erroneous decisions of a BCI has been existing for more than one decade, but this approach was so far little investigated in online mode.</p> <p>Methods</p> <p>In our study with eleven participants, an ErrP detection mechanism was implemented in an electroencephalography (EEG) based gaze-independent visual speller.</p> <p>Results</p> <p>Single-trial ErrPs were detected with a mean accuracy of 89.1% (AUC 0.90). The spelling speed was increased on average by 49.0% using ErrP detection. The improvement in spelling speed due to error detection was largest for participants with low spelling accuracy.</p> <p>Conclusion</p> <p>The performance of BCIs can be increased by using an automatic error detection mechanism. The benefit for patients with motor disorders is potentially high since they often have rather low spelling accuracies compared to healthy people.</p
    corecore