587 research outputs found

    Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity

    Get PDF
    We explored the feature extraction techniques for Bayesian assessment of EEG maturity of newborns in the context that the continuity of EEG is the most important feature for assessment of the brain development. The continuity is associated with EEG “stationarity” which we propose to evaluate with adaptive segmentation of EEG into pseudo-stationary intervals. The histograms of these intervals are then used as new features for the assessment of EEG maturity. In our experiments, we used Bayesian model averaging over decision trees to differentiate two age groups, each included 110 EEG recordings. The use of the proposed EEG features has shown, on average, a 6% increase in the accuracy of age differentiation

    Detecció automàtica i robusta de Bursts en EEG de nounats amb HIE. Enfocament tensorial

    Get PDF
    [ANGLÈS] Hypoxic-Ischemic Encephalopathy (HIE) is an important cause of brain injury in the newborn, and can result in long-term devastating consequences. Burst-suppression pattern is one of several indicators of severe pathology in the EEG signal that may occur after brain damage caused by e.g. asphyxia around the time of birth. The goal of this thesis is to design a robust method to detect burst patterns automatically regardless of the physiologic and extra-physiologic artifacts that may occur at any time. At first, a pre-detector has been designed to obtain potential burst candidates from different patients. Then, a post-classification has been implemented, applying high dimensional feature extraction methods, to get the real burst patterns from these patients with a high sensitivity.[CASTELLÀ] La Hipoxia-Isquemia Encefálica (HIE) es una causa importante de lesión cerebral en los recién nacidos, pudiendo acarrear devastadoras consecuencias a largo plazo. El patrón Burst-Suppression es uno de los indicadores dados en patologías severas en señales EEG los cuales ocurren después de una lesión cerebral causada, por ejemplo, por una asfixia poco después del nacimiento. El objetivo de esta tésis es diseñar un método robusto que detecte automáticamente patrones Burst, prescindiendo de los artefactos fisiológicos y extra-fisiológicos que puedan aparecer en cualquier momento. Primeramente, se ha diseñado un pre-detector para obtener los candidatos potenciales a Burst provenientes de diferentes pacientes. Seguidamente, se ha implementado una post-clasificación, aplicando métodos de extracción de características para altas dimensiones, para obtener patrones reales de Burst con una alta sensitividad.[CATALÀ] La Hipòxia-Isquèmia Encefàlica (HIE) és una causa important de lesió cerebral en nounats, que poden comportar devastadores conseqüències a llarg termini. El patró Burst-Suppression és un dels indicadors donats en patologies severes en els senyals EEG els quals ocorren després d'una lesió cerebral causada, per exemple, per una asfixia poc després del naixement. L'objectiu d'aquesta tesis és dissenyar un mètode robust que detecti automàticament patrons Burst, prescindint dels artefactes fisiològics i extra-fisiològics que poden aparèixer en qualsevol moment. Primerament, s'ha dissenyat un pre-detector per obtenir els candidats potencials a Burst provinents de diferents pacients. Seguidament, s'ha implementat una post-classificació, aplicant mètodes d'extracció de característiques per a altes dimensions, per tal d'obtenir patrons reals de Burst amb una alta sensitivitat

    Scale-free bursting in human cortex following hypoxia at birth

    Get PDF
    The human brain is fragile in the face of oxygen deprivation. Even a briefinterruption of metabolic supply at birth challenges an otherwise healthy neonatal cortex, leading to a cascade of homeostatic responses. During recovery from hypoxia, cortical activity exhibits a period of highly irregular electrical fluctuations known as burst suppression. Here we show that these bursts have fractal properties, with power-law scaling of burst sizes across a remarkable 5 orders of magnitude and a scale-free relationship between burst sizes and durations. Although burst waveforms vary greatly, their average shape converges to a simple form that is asymmetric at long time scales. Using a simple computational model, we argue that this asymmetry reflects activity-dependent changes in the excitatory-inhibitory balance of cortical neurons. Bursts become more symmetric following the resumption of normal activity, with a corresponding reorganization of burst scaling relationships. These findings place burst suppression in the broad class of scale-free physical processes termed crackling noise and suggest that the resumption of healthy activity reflects a fundamental reorganization in the relationship between neuronal activity and its underlying metabolic constraints

    Spatial variation in automated burst suppression detection in pharmacologically induced coma

    Get PDF
    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.National Institutes of Health (U.S.) (Grant K23 NS090900)National Institute of Neurological Diseases and Stroke (U.S.) (Grant K23 NS090900)National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant TROI-GMI04948

    Quantitative Preterm EEG Analysis: The Need for Caution in Using Modern Data Science Techniques

    Get PDF
    Hemodynamic changes during neonatal transition increase the vulnerability of the preterm brain to injury. Real-time monitoring of brain function during this period would help identify the immediate impact of these changes on the brain. Neonatal EEG provides detailed real-time information about newborn brain function but can be difficult to interpret for non-experts; preterm neonatal EEG poses even greater challenges. An objective quantitative measure of preterm brain health would be invaluable during neonatal transition to help guide supportive care and ultimately protect the brain. Appropriate quantitative measures of preterm EEG must be calculated and care needs to be taken when applying the many techniques available for this task in the era of modern data science. This review provides valuable information about the factors that influence quantitative EEG analysis and describes the common pitfalls. Careful feature selection is required and attention must be paid to behavioral state given the variations encountered in newborn EEG during different states. Finally, the detrimental influence of artifacts on quantitative EEG analysis is illustrated

    Early Brain Activity Relates to Subsequent Brain Growth in Premature Infants

    Get PDF
    Recent experimental studies have shown that early brain activity is crucial for neuronal survival and the development of brain networks; however, it has been challenging to assess its role in the developing human brain. We employed serial quantitative magnetic resonance imaging to measure the rate of growth in circumscribed brain tissues from preterm to term age, and compared it with measures of electroencephalographic (EEG) activity during the first postnatal days by 2 different methods. EEG metrics of functional activity were computed: EEG signal peak-to-peak amplitude and the occurrence of developmentally important spontaneous activity transients (SATs). We found that an increased brain activity in the first postnatal days correlates with a faster growth of brain structures during subsequent months until term age. Total brain volume, and in particular subcortical gray matter volume, grew faster in babies with less cortical electrical quiescence and with more SAT events. The present findings are compatible with the idea that (1) early cortical network activity is important for brain growth, and that (2) objective measures may be devised to follow early human brain activity in a biologically reasoned way in future research as well as during intensive care treatmen

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria
    corecore