251 research outputs found

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Accuracy evaluation of radiographers screen reading mammograms

    Get PDF
    This thesis evaluated the accuracy of radiographers screen-reading mammograms. This was undertaken as a potential solution to current radiologist workforce shortages that may contribute to delays in women receiving their screening mammogram results. This large, well-designed Australian study undertook extensive analysis and imparts evidence that even prior to any formal reading training, radiographers have good accuracy levels when screen-reading mammograms. It is expected that with formal screen-reading training these accuracy levels will further improve, such that radiographers have the potential to be one of the two screen-readers within the BreastScreen Australia program, contributing to timeliness and improved accuracy outcomes

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Caracterización de Patrones Anormales en Mamografías

    Get PDF
    Abstract. Computer-guided image interpretation is an extensive research area whose main purpose is to provide tools to support decision-making, for which a large number of automatic techniques have been proposed, such as, feature extraction, pattern recognition, image processing, machine learning, among others. In breast cancer, the results obtained at this area, they have led to the development of diagnostic support systems, which have even been approved by the FDA (Federal Drug Administration). However, the use of those systems is not widely extended in clinic scenarios, mainly because their performance is unstable and poorly reproducible. This is due to the high variability of the abnormal patterns associated with this neoplasia. This thesis addresses the main problem associated with the characterization and interpretation of breast masses and architectural distortion, mammographic findings directly related to the presence of breast cancer with higher variability in their form, size and location. This document introduces the design, implementation and evaluation of strategies to characterize abnormal patterns and to improve the mammographic interpretation during the diagnosis process. The herein proposed strategies allow to characterize visual patterns of these lesions and the relationship between them to infer their clinical significance according to BI-RADS (Breast Imaging Reporting and Data System), a radiologic tool used for mammographic evaluation and reporting. The obtained results outperform some obtained by methods reported in the literature both tasks classification and interpretation of masses and architectural distortion, respectively, demonstrating the effectiveness and versatility of the proposed strategies.Resumen. La interpretación de imágenes guiada por computador es una área extensa de investigación cuyo objetivo principal es proporcionar herramientas para el soporte a la toma de decisiones, para lo cual se han usado un gran número de técnicas de extracción de características, reconocimiento de patrones, procesamiento de imágenes, aprendizaje de máquina, entre otras. En el cáncer de mama, los resultados obtenidos en esta área han dado lugar al desarrollo de sistemas de apoyo al diagnóstico que han sido incluso aprobados por la FDA (Federal Drug Administration). Sin embargo, el uso de estos sistemas no es ampliamente extendido, debido principalmente, a que su desempeño resulta inestable y poco reproducible frente a la alta variabilidad de los patrones anormales asociados a esta neoplasia. Esta tesis trata el principal problema asociado a la caracterización y análisis de masas y distorsión de la arquitectura debido a que son hallazgos directamente relacionados con la presencia de cáncer y que usualmente presentan mayor variabilidad en su forma, tamaño y localización, lo que altera los resultados diagnósticos. Este documento introduce el diseño, implementación y evaluación de un conjunto de estrategias para caracterizar patrones anormales relacionados con este tipo de hallazgos para mejorar la interpretación y soportar el diagnóstico mediante la imagen mamaria. Los modelos aquí propuestos permiten caracterizar patrones visuales y la relación entre estos para inferir su significado clínico según el estándar BI-RADS (Breast Imaging Reporting and Data System) usado para la evaluación y reporte mamográfico. Los resultados obtenidos han demostrado mejorar a los resultados obtenidos por los métodos reportados en la literatura en tareas como clasificación e interpretación de masas y distorsión arquitectural, demostrando la efectividad y versatilidad de las estrategia propuestas.Doctorad

    Computer aided detection in mammography

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Can high-frequency ultrasound predict metastatic lymph nodes in patients with invasive breast cancer?

    Get PDF
    Aim To determine whether high-frequency ultrasound can predict the presence of metastatic axillary lymph nodes, with a high specificity and positive predictive value, in patients with invasive breast cancer. The clinical aim is to identify patients with axillary disease requiring surgery who would not normally, on clinical grounds, have an axillary dissection, so potentially improving outcome and survival rates. Materials and methods The ipsilateral and contralateral axillae of 42 consecutive patients with invasive breast cancer were scanned prior to treatment using a B-mode frequency of 13 MHz and a Power Doppler frequency of 7 MHz. The presence or absence of an echogenic centre for each lymph node detected was recorded, and measurements were also taken to determine the L/S ratio and the widest and narrowest part of the cortex. Power Doppler was also used to determine vascularity. The contralateral axilla was used as a control for each patient. Results In this study of patients with invasive breast cancer, ipsilateral lymph nodes with a cortical bulge ≥3 mm and/or at least two lymph nodes with absent echogenic centres indicated the presence of metastatic axillary lymph nodes (10 patients). The sensitivity and specificity were 52.6% and 100%, respectively, positive and negative predictive values were 100% and 71.9%, respectively, the P value was 0.001 and the Kappa score was 0.55.\ud Conclusion This would indicate that high-frequency ultrasound can be used to accurately predict metastatic lymph nodes in a proportion of patients with invasive breast cancer, which may alter patient management
    corecore