6,768 research outputs found

    Parameter Identification And Fault Detection For Reliable Control Of Permanent Magnet Motors

    Get PDF
    The objective of this dissertation is to develop new fault detection, identification, estimation and control algorithms that will be used to detect winding stator fault, identify the motor parameters and optimally control machine during faulty condition. Quality or proposed algorithms for Fault detection, parameter identification and control under faulty condition will validated through analytical study (Cramer-Rao bound) and simulation. Simulation will be performed for three most applied control schemes: Proportional-Integral-Derivative (PID), Direct Torque Control (DTC) and Field Oriented Control (FOC) for Permanent Magnet Machines. New detection schemes forfault detection, isolation and machine parameter identification are presented and analyzed. Different control schemes as PID, DTC, FOC for Control of PM machines have different control loops and therefore it is probable that fault detection and isolation will have different sensitivity. It is very probable that one of these control schemes (PID, DTC or FOC) are more convenient for fault detection and isolation which this dissertation will analyze through computer simulation and, if laboratory condition exist, also running a physical models

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter

    Online fault detection based on typicality and eccentricity data analytics

    Get PDF
    Fault detection is a task of major importance in industry nowadays, since that it can considerably reduce the risk of accidents involving human lives, in addition to production and, consequently, financial losses. Therefore, fault detection systems have been largely studied in the past few years, resulting in many different methods and approaches to solve such problem. This paper presents a detailed study on fault detection on industrial processes based on the recently introduced eccentricity and typicality data analytics (TEDA) approach. TEDA is a recursive and non-parametric method, firstly proposed to the general problem of anomaly detection on data streams. It is based on the measures of data density and proximity from each read data point to the analyzed data set. TEDA is an online autonomous learning algorithm that does not require a priori knowledge about the process, is completely free of user- and problem-defined parameters, requires very low computational effort and, thus, is very suitable for real-time applications. The results further presented were generated by the application of TEDA to a pilot plant for industrial process

    Statistical process monitoring of a multiphase flow facility

    Get PDF
    Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at 〈http://depts.washington.edu/control/LARRY/TE/download.html〉 Accessed 21.03.2014). The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms

    An Improved Wavelet‐Based Multivariable Fault Detection Scheme

    Get PDF
    Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)‐based Q and EWMA methods and MSPLS‐based Q method

    Robust statistical methods for automated outlier detection

    Get PDF
    The computational challenge of automating outlier, or blunder point, detection in radio metric data requires the use of nonstandard statistical methods because the outliers have a deleterious effect on standard least squares methods. The particular nonstandard methods most applicable to the task are the robust statistical techniques that have undergone intense development since the 1960s. These new methods are by design more resistant to the effects of outliers than standard methods. Because the topic may be unfamiliar, a brief introduction to the philosophy and methods of robust statistics is presented. Then the application of these methods to the automated outlier detection problem is detailed for some specific examples encountered in practice

    Real-time fault identification for developmental turbine engine testing

    Get PDF
    Hundreds of individual sensors produce an enormous amount of data during developmental turbine engine testing. The challenge is to ensure the validity of the data and to identify data and engine anomalies in a timely manner. An automated data validation, engine condition monitoring, and fault identification process that emulates typical engineering techniques has been developed for developmental engine testing.An automated data validation and fault identification approach employing enginecycle-matching principles is described. Engine cycle-matching is automated by using an adaptive nonlinear component-level computer model capable of simulating both steady state and transient engine operation. Automated steady-state, transient, and real-time model calibration processes are also described. The model enables automation of traditional data validation, engine condition monitoring, and fault identification procedures. A distributed parallel computing approach enables the entire process to operate in real-time.The result is a capability to detect data and engine anomalies in real-time during developmental engine testing. The approach is shown to be successful in detecting and identifying sensor anomalies as they occur and distinguishing these anomalies from variations in component and overall engine aerothermodynamic performance. The component-level model-based engine performance and fault identification technique of the present research is capable of: identifying measurement errors on the order of 0.5 percent (e.g., sensor bias, drift,level shift, noise, or poor response) in facility fuel flow, airflow, and thrust measurements; identifying measurement errors in engine aerothermodynamic measurements (rotorspeeds, gas path pressures and temperatures); identifying measurement errors in engine control sensors (e.g., leaking/biased pressure sensor, slowly responding pressure measurement) and variable geometry rigging (e.g., misset guide vanes or nozzle area) that would invalidate a test or series of tests; identifying abrupt faults (e.g., faults due to domestic object damage, foreign object damage, and control anomalies); identifying slow faults (e.g., component or overall engine degradation, and sensor drift). Specifically, the technique is capable of identifying small changes in compressor (or fan) performance on the order of 0.5 percent; and being easily extended to diagnose secondary failure modes and to verify any modeling assumptions that may arise for developmental engine tests (e.g., increase in turbine flow capacity, inaccurate measurement of facility bleed flows, horsepower extraction, etc.).The component-level model-based engine performance and fault identification method developed in the present work brings together features which individually and collectively advance the state-of-the-art. These features are separated into three categories: advancements to effectively quantify off-nominal behavior, advancements to provide a fault detection capability that is practical from the viewpoint of the analysis,implementation, tuning, and design, and advancements to provide a real-time fault detection capability that is reliable and efficient
    • 

    corecore