6,414 research outputs found

    Securing Cyber-Physical Social Interactions on Wrist-worn Devices

    Get PDF
    Since ancient Greece, handshaking has been commonly practiced between two people as a friendly gesture to express trust and respect, or form a mutual agreement. In this article, we show that such physical contact can be used to bootstrap secure cyber contact between the smart devices worn by users. The key observation is that during handshaking, although belonged to two different users, the two hands involved in the shaking events are often rigidly connected, and therefore exhibit very similar motion patterns. We propose a novel key generation system, which harvests motion data during user handshaking from the wrist-worn smart devices such as smartwatches or fitness bands, and exploits the matching motion patterns to generate symmetric keys on both parties. The generated keys can be then used to establish a secure communication channel for exchanging data between devices. This provides a much more natural and user-friendly alternative for many applications, e.g., exchanging/sharing contact details, friending on social networks, or even making payments, since it doesn’t involve extra bespoke hardware, nor require the users to perform pre-defined gestures. We implement the proposed key generation system on off-the-shelf smartwatches, and extensive evaluation shows that it can reliably generate 128-bit symmetric keys just after around 1s of handshaking (with success rate >99%), and is resilient to different types of attacks including impersonate mimicking attacks, impersonate passive attacks, or eavesdropping attacks. Specifically, for real-time impersonate mimicking attacks, in our experiments, the Equal Error Rate (EER) is only 1.6% on average. We also show that the proposed key generation system can be extremely lightweight and is able to run in-situ on the resource-constrained smartwatches without incurring excessive resource consumption

    A new system to detect coronavirus social distance violation

    Get PDF
    In this paper, a novel solution to avoid new infections is presented. Instead of tracing users’ locations, the presence of individuals is detected by analysing the voices, and people’s faces are detected by the camera. To do this, two different Android applications were implemented. The first one uses the camera to detect people’s faces whenever the user answers or performs a phone call. Firebase Platform will be used to detect faces captured by the camera and determine its size and estimate their distance to the phone terminal. The second application uses voice biometrics to differentiate the users’ voice from unknown speakers and creates a neural network model based on 5 samples of the user’s voice. This feature will only be activated whenever the user is surfing the Internet or using other applications to prevent undesired contacts. Currently, the patient’s tracking is performed by geolocation or by using Bluetooth connection. Although face detection and voice recognition are existing methods, this paper aims to use them and integrate both in a single device. Our application cannot violate privacy since it does not save the data used to carry out the detection and does not associate this data to people

    A study of smart device-based mobile imaging and implementation for engineering applications

    Get PDF
    Title from PDF of title page, viewed on June 12, 2013Thesis advisor: ZhiQiang ChenVitaIncludes bibliographic references (pages 76-82)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013Mobile imaging has become a very active research topic in recent years thanks to the rapid development of computing and sensing capabilities of mobile devices. This area features multi-disciplinary studies of mobile hardware, imaging sensors, imaging and vision algorithms, wireless network and human-machine interface problems. Due to the limitation of computing capacity that early mobile devices have, researchers proposed client-server module, which push the data to more powerful computing platforms through wireless network, and let the cloud or standalone servers carry out all the computing and processing work. This thesis reviewed the development of mobile hardware and software platform, and the related research done on mobile imaging for the past 20 years. There are several researches on mobile imaging, but few people aim at building a framework which helps engineers solving problems by using mobile imaging. With higher-resolution imaging and high-performance computing power built into smart mobile devices, more and more imaging processing tasks can be achieved on the device rather than the client-server module. Based on this fact, a framework of collaborative mobile imaging is introduced for civil infrastructure condition assessment to help engineers solving technical challenges. Another contribution in this thesis is applying mobile imaging application into home automation. E-SAVE is a research project focusing on extensive use of automation in conserving and using energy wisely in home automation. Mobile users can view critical information such as energy data of the appliances with the help of mobile imaging. OpenCV is an image processing and computer vision library. The applications in this thesis use functions in OpenCV including camera calibration, template matching, image stitching and Canny edge detection. The application aims to help field engineers is interactive crack detection. The other one uses template matching to recognize appliances in the home automation system.Introduction -- Background and related work -- Basic imaging processing methods for mobile applications -- Collaborative and interactive mobile imaging -- Mobile imaging for smart energy -- Conclusion and recommendation
    • …
    corecore