1,031 research outputs found

    The detection of wound infection by ion mobility chemical analysis

    Get PDF
    Surgical site infection represents a large burden of care in the National Health Service. Current methods for diagnosis include a subjective clinical assessment and wound swab culture that may take several days to return a result. Both techniques are potentially unreliable and result in delays in using targeted antibiotics. Volatile organic compounds (VOCs) are produced by micro-organisms such as those present in an infected wound. This study describes the use of a device to differentiate VOCs produced by an infected wound vs. colonised wound. Malodourous wound dressings were collected from patients, these were a mix of post-operative wounds and vascular leg ulcers. Wound microbiology swabs were taken and antibiotics commenced as clinically appropriate. A control group of soiled, but not malodorous wound dressings were collected from patients who had a split skin graft (SSG) donor site. The analyser used was a G.A.S. GC-IMS. The results from the samples had a sensitivity of 100% and a specificity of 88%, with a positive predictive value of 90%. An area under the curve (AUC) of 91% demonstrates an excellent ability to discriminate those with an infected wound from those without. VOC detection using GC-IMS has the potential to serve as a diagnostic tool for the differentiation of infected and non-infected wounds and facilitate the treatment of wound infections that is cost effective, non-invasive, acceptable to patients, portable, and reliable

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    An in vitro investigation of microbial volatile analysis for diagnosis of wound infection

    Get PDF
    Microorganisms produce a wide range of volatile compounds as a product of metabolism. As a result of their different metabolic capabilities, the profiles of volatiles produced will differ between species. This research investigates the detection of volatile profiles from bacterial species associated with wound infection, for species discrimination when cultured under wound like conditions.This work shows that by combing the analysis of bacterial culture headspace using Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) with multivariate statistical analysis it is possible to discriminate wound-associated bacterial species in planktonic culture, in both complex culture media and a simulated wound fluid. Furthermore, this research demonstrates the detection of volatile profiles from discarded clinical wound dressings. To advance the use of volatile analysis of wound-associated bacteria for species discrimination, a novel collagen based biofilm model providing wound-like culture conditions was developed and characterised. Use of this model for the culture of reproducible steady-state biofilms, and analysis of biofilm headspace volatile profiles was successfully undertaken and subsequently employed in combination with SIFT-MS and multivariate statistical analysis. Results show that the discrimination of wound-associated bacterial biofilms based on headspace volatile profiles under wound like conditions was feasible. In addition, SIFT-MS analysis of multispecies biofilms was undertaken and the detected headspace profiles compared to those of single species biofilms. This indicated that identification of multispecies biofilms using detection of volatile metabolites is more complex, as the headspace was dominated by volatile compounds associated with only one of the species present.The results of this research indicate that application of volatile analysis to wound diagnostics may be of use for the identification of the cause of infection, particularly within acute wounds, which are often caused by a single species

    Early identification of wound infection: understanding wound odour

    Get PDF
    Malodorous wounds can be distressing for patients and their families, negatively impacting on quality-of-life outcomes. For health professionals malodorous wounds can also cause distress manifesting in feelings of disgust when faced with a wound emitting an unpleasant or repulsive odour. There has been investigation into the management of controlling odour particularly in relation to fungating wounds. However, there is limited research that explores techniques for early identification and recognition of wound odours that may be indicative of infection. Electronic nose technology has received some attention, but to date has not been integrated into either diagnostics of infection in wounds or education of health professionals to prepare them for the realities of clinical practice

    The human skin volatolome: a systematic review of untargeted mass spectrometry analysis

    Get PDF
    The analysis of volatile organic compounds (VOCs) can provide important clinical information (entirely non-invasively); however, the exact extent to which VOCs from human skin can be signatures of health and disease is unknown. This systematic review summarises the published literature concerning the methodology, application, and volatile profiles of skin VOC studies. An online literature search was conducted in accordance with the preferred reporting items for systematic reviews and meta-analysis, to identify human skin VOC studies using untargeted mass spectrometry (MS) methods. The principal outcome was chemically verified VOCs detected from the skin. Each VOC was cross-referenced using the CAS number against the Human Metabolome and KEGG databases to evaluate biological origins. A total of 29 studies identified 822 skin VOCs from 935 participants. Skin VOCs were commonly sampled from the hand (n = 9) or forearm (n = 7) using an absorbent patch (n = 15) with analysis by gas chromatography MS (n = 23). Twenty-two studies profiled the skin VOCs of healthy subjects, demonstrating a volatolome consisting of aldehydes (18%), carboxylic acids (12%), alkanes (12%), fatty alcohols (9%), ketones (7%), benzenes and derivatives (6%), alkenes (2%), and menthane monoterpenoids (2%). Of the VOCs identified, 13% had putative endogenous origins, 46% had tentative exogenous origins, and 40% were metabolites from mixed metabolic pathways. This review has comprehensively profiled the human skin volatolome, demonstrating the presence of a distinct VOC signature of healthy skin, which can be used as a reference for future researchers seeking to unlock the clinical potential of skin volatolomics. As significant proportions of identified VOCs have putative exogenous origins, strategies to minimise their presence through methodological refinements and identifying confounding compounds are discussed

    Real-time detection of volatile metabolites enabling species-level discrimination of bacterial biofilms associated with wound infection

    Get PDF
    Aims: The main aim of this study was to investigate the real-time detection of volatile metabolites for the species-level discrimination of pathogens associated with clinically relevant wound infection, when grown in a collagen wound biofilm model. Methods and Results: This work shows that Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes produce a multitude of volatile compounds when grown as biofilms in a collagen-based biofilm model. The real-time detection of these complex volatile profiles using selected ion flow tube mass spectrometry and the use of multivariate statistical analysis on the resulting data can be used to successfully differentiate between the pathogens studied. Conclusions: The range of bacterial volatile compounds detected between the species studied vary and are distinct. Discrimination between bacterial species using real-time detection of volatile metabolites and multivariate statistical analysis was successfully demonstrated. Significance and Impact of the Study: Development of rapid point-of-care diagnostics for wound infection would improve diagnosis and patient care. Such technological approaches would also facilitate the appropriate use of antimicrobials, minimizing the emergence of antimicrobial resistance. This study further develops the use of volatile metabolite detection as a new diagnostic approach for wound infection

    Investigation of Human Pathogen Using Electronic Nose for Early Diagnosis

    Get PDF
    Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach

    Supporting wound infection diagnosis: advancements and challenges with electronic noses

    Get PDF
    Wound infections are a major problem worldwide, both for the healthcare system and for patients affected. Currently available diagnostic methods to determine the responsible germs are time-consuming and costly. Wound infections are mostly caused by various bacteria, which in turn produce volatile organic compounds. From clinical experience, we know that depending on the bacteria involved, a specific odor impression can be expected. For this reason, we hypothesized that electronic noses, i.e., non-invasive electronic sensors for the detection of volatile organic compounds, are applicable for diagnostic purposes. By providing a comprehensive overview of the state-of-research, we tested our hypothesis. In particular, we addressed three overarching questions: 1) which sensor technologies are suitable for the diagnosis of wound infections and why? 2) how must the (biological) sample be prepared and presented to the measurement system? 3) which machine learning methods and algorithms have already proven successful for the classification of microorganisms? The corresponding articles have critically been reviewed and are discussed particularly in the context of their potential for clinical diagnostics. In summary, it can already be stated today that the use of electronic noses for the detection of bacteria in wound infections is a very interesting, fast and non-invasive method. However, reliable clinical studies are still missing and further research is necessary
    corecore