56 research outputs found

    An intelligent healthcare system for detection and classification to discriminate vocal fold disorders

    Get PDF
    The growing population of senior citizens around the world will appear as a big challenge in the future and they will engage a significant portion of the healthcare facilities. Therefore, it is necessary to develop intelligent healthcare systems so that they can be deployed in smart homes and cities for remote diagnosis. To overcome the problem, an intelligent healthcare system is proposed in this study. The proposed intelligent system is based on the human auditory mechanism and capable of detection and classification of various types of the vocal fold disorders. In the proposed system, critical bandwidth phenomena by using the bandpass filters spaced over Bark scale is implemented to simulate the human auditory mechanism. Therefore, the system acts like an expert clinician who can evaluate the voice of a patient by auditory perception. The experimental results show that the proposed system can detect the pathology with an accuracy of 99.72%. Moreover, the classification accuracy for vocal fold polyp, keratosis, vocal fold paralysis, vocal fold nodules, and adductor spasmodic dysphonia is 97.54%, 99.08%, 96.75%, 98.65%, 95.83%, and 95.83%, respectively. In addition, an experiment for paralysis versus all other disorders is also conducted, and an accuracy of 99.13% is achieved. The results show that the proposed system is accurate and reliable in vocal fold disorder assessment and can be deployed successfully for remote diagnosis. Moreover, the performance of the proposed system is better as compared to existing disorder assessment systems

    Lung sound classification using multiresolution Higuchi fractal dimension measurement

    Get PDF
    Lung sound is one indicator of abnormalities in the lungs and respiratory tract. Research for automatic lung sound classification has become one of the interests for researchers because lung disease is one of the diseases with the most sufferers in the world. The use of lung sounds as a source of information because of the ease in data acquisition and auscultation is a standard method in examining pulmonary function. This study simulated the potential use of Higuchi fractal dimension (HFD) as a feature extraction method for lung sound classification. HFD calculations were run on a series of k values to generate some HFD values as features. According to the simulation results, the proposed method could produce an accuracy of up to 97.98% for five classes of lung sound data. The results also suggested that the shift in HFD values over the selection of a time interval k can be used for lung sound classification

    An IoT-based smart healthcare system to detect dysphonia

    Get PDF
    Smart healthcare systems for the internet of things (IoT) platform are cost-efficient and facilitate continuous remote monitoring of patients to avoid unnecessary hospital visits and long waiting times to see practitioners. Presenting a smart healthcare system for the detection of dysphonia can reduce the suffering and pain of patients by providing an initial evaluation of voice. This preliminary feedback of voice could minimize the burden on ENT specialists by referring only genuine cases to them as well as giving an early alarm of potential voice complications to patients. Any possible delay in the treatment and/or inaccurate diagnosis using the subjective nature of tools may lead to severe circumstances for an individual because some types of dysphonia are life-threatening. Therefore, an accurate and reliable smart healthcare system for IoT platform to detect dysphonia is proposed and implemented in this study. Higher-order directional derivatives are used to analyze the time–frequency spectrum of signals in the proposed system. The computed derivatives provide essential and vital information by analyzing the spectrum along different directions to capture the changes that appeared due to malfunctioning the vocal folds. The proposed system provides 99.1% accuracy, while the sensitivity and specificity are 99.4 and 98.1%, respectively. The experimental results showed that the proposed system could provide better classification accuracy than the traditional non-directional first-order derivatives. Hence, the system can be used as a reliable tool for detecting dysphonia and implemented in edge devices to avoid latency issues and protect privacy, unlike cloud processing

    COVID-19 activity screening by a smart-data-driven multi-band voice analysis

    Get PDF
    COVID-19 is a disease caused by the new coronavirus SARS-COV-2 which can lead to severe respiratory infections. Since its first detection it caused more than six million worldwide deaths. COVID-19 diagnosis non-invasive and low-cost methods with faster and accurate results are still needed for a fast disease control. In this research, 3 different signal analyses have been applied (per broadband, per sub-bands and per broadband & sub-bands) to Cough, Breathing & Speech signals of Coswara dataset to extract non-linear patterns (Energy, Entropies, Correlation Dimension, Detrended Fluctuation Analysis, Lyapunov Exponent & Fractal Dimensions) for feeding a XGBoost classifier to discriminate COVID-19 activity on its different stages. Classification accuracies ranged between 83.33% and 98.46% have been achieved, surpassing the state-of-art methods in some comparisons. It should be empathized the 98.46% of accuracy reached on pair Healthy Controls vs all COVID-19 stages. The results shows that the method may be adequate for COVID-19 diagnosis screening assistance.info:eu-repo/semantics/acceptedVersio

    Chaos-based robust method of zero-watermarking for medical signals

    Get PDF
    The growing use of wireless health data transmission via Internet of Things is significantly beneficial to the healthcare industry for optimal usage of health-related facilities. However, at the same time, the use raises concern of privacy protection. Health-related data are private and should be suitably protected. Several pathologies, such as vocal fold disorders, indicate high risks of prevalence in individuals with voice-related occupations, such as teachers, singers, and lawyers. Approximately, one-third of the world population suffers from the voice-related problems during the life span and unauthorized access to their data can create unavoidable circumstances in their personal and professional lives. In this study, a zero-watermarking method is proposed and implemented to protect the identity of patients who suffer from vocal fold disorders. In the proposed method, an image for a patient's identity is generated and inserted into secret keys instead of a host medical signal. Consequently, imperceptibility is naturally achieved. The locations for the insertion of the watermark are determined by a computation of local binary patterns from the time–frequency spectrum. The spectrum is calculated for low frequencies such that it may not be affected by noise attacks. The experimental results suggest that the proposed method has good performance and robustness against noise, and it is reliable in the recovery of an individual's identity

    Protection of Records and Data Authentication based on Secret Shares and Watermarking

    Get PDF
    The rapid growth in communication technology facilitates the health industry in many aspects from transmission of sensor’s data to real-time diagnosis using cloud-based frameworks. However, the secure transmission of data and its authenticity become a challenging task, especially, for health-related applications. The medical information must be accessible to only the relevant healthcare staff to avoid any unfortunate circumstances for the patient as well as for the healthcare providers. Therefore, a method to protect the identity of a patient and authentication of transmitted data is proposed in this study. The proposed method provides dual protection. First, it encrypts the identity using Shamir’s secret sharing scheme without the increase in dimension of the original identity. Second, the identity is watermarked using zero-watermarking to avoid any distortion into the host signal. The experimental results show that the proposed method encrypts, embeds and extracts identities reliably. Moreover, in case of malicious attack, the method distorts the embedded identity which provides a clear indication of fabrication. An automatic disorder detection system using Mel-frequency cepstral coefficients and Gaussian mixture model is also implemented which concludes that malicious attacks greatly impact on the accurate diagnosis of disorders

    Enhanced Living by Assessing Voice Pathology Using a Co-Occurrence Matrix.

    Full text link
    A large number of the population around the world suffers from various disabilities. Disabilities affect not only children but also adults of different professions. Smart technology can assist the disabled population and lead to a comfortable life in an enhanced living environment (ELE). In this paper, we propose an effective voice pathology assessment system that works in a smart home framework. The proposed system takes input from various sensors, and processes the acquired voice signals and electroglottography (EGG) signals. Co-occurrence matrices in different directions and neighborhoods from the spectrograms of these signals were obtained. Several features such as energy, entropy, contrast, and homogeneity from these matrices were calculated and fed into a Gaussian mixture model-based classifier. Experiments were performed with a publicly available database, namely, the Saarbrucken voice database. The results demonstrate the feasibility of the proposed system in light of its high accuracy and speed. The proposed system can be extended to assess other disabilities in an ELE

    A zero-watermarking algorithm for privacy protection in biomedical signals

    Get PDF
    Confidentiality of health information is indispensable to protect privacy of an individual. However, recent advances in electronic healthcare systems allow transmission of sensitive information through the Internet, which is prone to various vulnerabilities, attacks and may leads to unauthorized disclosure. Such situations may not only create adverse effects for individuals but may also cause severe consequences such as hefty regulatory fines, bad publicity, legal fees, and forensics. To avoid such predicaments, a privacy protected healthcare system is proposed in this study that protects the identity of an individual as well as detects vocal fold disorders. The privacy of the developed healthcare system is based on the proposed zero-watermarking algorithm, which embeds a watermark in a secret key instead of the signals to avoid the distortion in an audio sample. The identity is protected by the generation of its secret shares through visual cryptography. The generated shares are embedded by finding the patterns into the audio with the application of one-dimensional local binary pattern. The proposed zero-watermarking algorithm is evaluated by using audio samples taken from the Massachusetts Eye and Ear Infirmary voice disorder database. Experimental results demonstrate that the proposed algorithm achieves imperceptibility and is reliable in its extraction of identity. In addition, the proposed algorithm does not affect the results of disorder detection and it is robust against noise attacks of various signal-to-noise ratios
    • …
    corecore