273 research outputs found

    CENTRIST3D : um descritor espaço-temporal para detecção de anomalias em vídeos de multidões

    Get PDF
    Orientador: Hélio PedriniDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O campo de estudo da detecção de anomalias em multidões possui uma vasta gama de aplicações, podendo-se destacar o monitoramento e vigilância de áreas de interesse, tais como aeroportos, bancos, parques, estádios e estações de trens, como uma das mais importantes. Em geral, sistemas de vigilância requerem prossionais qualicados para assistir longas gravações à procura de alguma anomalia, o que demanda alta concentração e dedicação. Essa abordagem tende a ser ineciente, pois os seres humanos estão sujeitos a falhas sob condições de fadiga e repetição devido aos seus próprios limites quanto à capacidade de observação e seu desempenho está diretamente ligado a fatores físicos e psicológicos, os quais podem impactar negativamente na qualidade de reconhecimento. Multidões tendem a se comportar de maneira complexa, possivelmente mudando de orientação e velocidade rapidamente, bem como devido à oclusão parcial ou total. Consequentemente, técnicas baseadas em rastreamento de pedestres ou que dependam de segmentação de fundo geralmente apresentam maiores taxas de erros. O conceito de anomalia é subjetivo e está sujeito a diferentes interpretações, dependendo do contexto da aplicação. Neste trabalho, duas contribuições são apresentadas. Inicialmente, avaliamos a ecácia do descritor CENsus TRansform hISTogram (CENTRIST), originalmente utilizado para categorização de cenas, no contexto de detecção de anomalias em multidões. Em seguida, propusemos o CENTRIST3D, uma versão modicada do CENTRIST que se utiliza de informações espaço-temporais para melhorar a discriminação dos eventos anômalos. Nosso método cria histogramas de características espaço-temporais de quadros de vídeos sucessivos, os quais foram divididos hierarquicamente utilizando um algoritmo modicado da correspondência em pirâmide espacial. Os resultados foram validados em três bases de dados públicas: University of California San Diego (UCSD) Anomaly Detection Dataset, Violent Flows Dataset e University of Minesota (UMN) Dataset. Comparado com outros trabalhos da literatura, CENTRIST3D obteve resultados satisfatórios nas bases Violent Flows e UMN, mas um desempenho abaixo do esperado na base UCSD, indicando que nosso método é mais adequado para cenas com mudanças abruptas em movimento e textura. Por m, mostramos que há evidências de que o CENTRIST3D é um descritor eciente de ser computado, sendo facilmente paralelizável e obtendo uma taxa de quadros por segundo suciente para ser utilizado em aplicações de tempo realAbstract: Crowd abnormality detection is a eld of study with a wide range of applications, where surveillance of interest areas, such as airports, banks, parks, stadiums and subways, is one of the most important purposes. In general, surveillance systems require well-trained personnel to watch video footages in order to search for abnormal events. Moreover, they usually are dependent on human operators, who are susceptible to failure under stressful and repetitive conditions. This tends to be an ineective approach since humans have their own natural limits of observation and their performance is tightly related to their physical and mental state, which might aect the quality of surveillance. Crowds tend to be complex, subject to subtle changes in motion and to partial or total occlusion. Consequently, approaches based on individual pedestrian tracking and background segmentation may suer in quality due to the aforementioned problems. Anomaly itself is a subjective concept, since it depends on the context of the application. Two main contributions are presented in this work. We rst evaluate the eectiveness of the CENsus TRansform hISTogram (CENTRIST) descriptor, initially designed for scene categorization, in crowd abnormality detection. Then, we propose the CENTRIST3D descriptor, a spatio-temporal variation of CENTRIST. Our method creates a histogram of spatiotemporal features from successive frames by extracting histograms of Volumetric Census Transform from a spatial representation using a modied Spatial Pyramid Matching algorithm. Additionally, we test both descriptors in three public data collections: UCSD Anomaly Detection Dataset, Violent Flows Dataset, and UMN Datasets. Compared to other works of the literature, CENTRIST3D achieved satisfactory accuracy rates on both Violent Flows and UMN Datasets, but poor performance on the UCSD Dataset, indicating that our method is more suitable to scenes with fast changes in motion and texture. Finally, we provide evidence that CENTRIST3D is an ecient descriptor to be computed, since it requires little computational time, is easily parallelizable and achieves suitable frame-per-second rates to be used in real-time applicationsMestradoCiência da ComputaçãoMestre em Ciência da Computação1406874159166/2015-2CAPESCNP

    Detecção de eventos violentos em sequências de vídeos baseada no operador histograma da transformada census

    Get PDF
    Orientador: Hélio PedriniDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Sistemas de vigilância em sequências de vídeo têm sido amplamente utilizados para o monitoramento de cenas em diversos ambientes, tais como aeroportos, bancos, escolas, indústrias, estações de ônibus e trens, rodovias e lojas. Devido à grande quantidade de informação obtida pelas câmeras de vigilância, o uso de inspeção visual por operadores de câmera se torna uma tarefa cansativa e sujeita a falhas, além de consumir muito tempo. Um desafio é o desenvolvimento de sistemas inteligentes de vigilância capazes de analisar longas sequências de vídeos capturadas por uma rede de câmeras de modo a identificar um determinado comportamento. Neste trabalho, foram propostas e avaliadas diversas técnicas de classificação, tendo como base o operador CENTRIST (Histograma da Transformada Census), no contexto de identificação de eventos violentos em cenas de vídeo. Adicionalmente, foram avaliados outros descritores tradicionais, como HoG (Histograma de Gradientes Orientados), HOF (Histograma do Fluxo Óptico) e descritores extraídos a partir de modelos de aprendizado de máquina profundo pré-treinados. De modo a permitir a avaliação apenas em regiões de interesse presentes nos quadros dos vídeos, técnicas para remoção do fundo da cena. Uma abordagem baseada em janela deslizante foi utilizada para avaliar regiões menores da cena em combinação com um critério de votação. A janela deslizante é então aplicada juntamente com uma filtragem de blocos utilizando fluxo óptico da cena. Para demonstrar a efetividade de nosso método para discriminar violência em cenas de multidões, os resultados obtidos foram comparados com outras abordagens disponíveis na literatura em duas bases de dados públicas (Violence in Crowds e Hockey Fights). A eficácia da combinação entre CENTRIST e HoG foi demonstrada em comparação com a utilização desses operadores individualmente. A combinação desses operadores obteve aproximadamente 88% contra 81% utilizando apenas HoG e 86% utilizando CENTRIST. A partir do refinamento do método proposto, foi identificado que avaliar blocos do quadro com a abordagem de janela deslizante tornou o método mais eficaz. Técnicas para geração de palavras visuais com codificação esparsa, medida de distância com um modelo de misturas Gaussianas e medida de distância entre agrupamentos também foram avaliadas e discutidas. Além disso, também foi avaliado calcular dinamicamente o limiar de votação, o que trouxe resultados melhores em alguns casos. Finalmente, formas de restringir os atores presentes nas cenas utilizando fluxo óptico foram analisadas. Utilizando o método de Otsu para calcular o limiar do fluxo óptico da cena a eficiência supera nossos resultados mais competitivos: 91,46% de acurácia para a base Violence in Crowds e 92,79% para a base Hockey FightsAbstract: Surveillance systems in video sequences have been widely used to monitor scenes in various environments, such as airports, banks, schools, industries, bus and train stations, highways and stores. Due to the large amount of information obtained via surveillance cameras, the use of visual inspection by camera operators becomes a task subject to fatigue and failure, in addition to consuming a lot of time. One challenge is the development of intelligent surveillance systems capable of analyzing long video sequences captured by a network of cameras in order to identify a certain behavior. In this work, we propose and analyze the use of several classification techniques, based on the CENTRIST (Transformation Census Histogram) operator, in the context of identifying violent events in video scenes. Additionally, we evaluated other traditional descriptors, such as HoG (Oriented Gradient Histogram), HOF (Optical Flow Histogram) and descriptors extracted from pre-trained deep machine learning models. In order to allow the evaluation only in regions of interest present in the video frames, we investigated techniques for removing the background from the scene. A sliding window-based approach was used to assess smaller regions of the scene in combination with a voting criterion. The sliding window is then applied along with block filtering using the optical flow of the scene. To demonstrate the effectiveness of our method for discriminating violence in crowd scenes, we compared the results to other approaches available in the literature in two public databases (Violence in Crowds and Hockey Fights). The combination of CENTRIST and HoG was demonstrated in comparison to the use of these operators individually. The combination of both operators obtained approximately 88% against 81% using only HoG and 86% using CENTRIST. From the refinement of the proposed method, we identified that evaluating blocks of the frame with the sliding window-based approach made the method more effective. Techniques for generating a codebook with sparse coding, distance measurement with a Gaussian mixture model and distance measurement between clusters were evaluated and discussed. Also we dynamically calculate the threshold for class voting, which obtained superior results in some cases. Finally, strategies for restricting the actors present in the scenes using optical flow were analyzed. By using the Otsu¿s method to calculate the threshold from the optical flow at the scene, the effectiveness surpasses our most competitive results: 91.46% accuracy for the Violence in Crowds dataset and 92.79% for the Hockey Fights datasetMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Intelligent computer vision processing techniques for fall detection in enclosed environments

    Get PDF
    Detecting unusual movement (falls) for elderly people in enclosed environments is receiving increasing attention and is likely to have massive potential social and economic impact. In this thesis, new intelligent computer vision processing based techniques are proposed to detect falls in indoor environments for senior citizens living independently, such as in intelligent homes. Different types of features extracted from video-camera recordings are exploited together with both background subtraction analysis and machine learning techniques. Initially, an improved background subtraction method is used to extract the region of a person in the recording of a room environment. A selective updating technique is introduced for adapting the change of the background model to ensure that the human body region will not be absorbed into the background model when it is static for prolonged periods of time. Since two-dimensional features can generate false alarms and are not invariant to different directions, more robust three-dimensional features are next extracted from a three-dimensional person representation formed from video-camera measurements of multiple calibrated video-cameras. The extracted three-dimensional features are applied to construct a single Gaussian model using the maximum likelihood technique. This can be used to distinguish falls from non-fall activity by comparing the model output with a single. In the final works, new fall detection schemes which use only one uncalibrated video-camera are tested in a real elderly person s home environment. These approaches are based on two-dimensional features which describe different human body posture. The extracted features are applied to construct a supervised method for posture classification for abnormal posture detection. Certain rules which are set according to the characteristics of fall activities are lastly used to build a robust fall detection model

    Improved Tower Cranes Operation Using Integrated 3D BIM Model and GPS Technology

    Get PDF
    Tower and mobile cranes are the most commonly used equipment on building construction jobsites. They play an essential role in material handling, placement, assembly and erection operations. Statistics reveal that during the last decade, the construction industry has suffered globally from crane related accidents. Hence, detailed study of different aspects of crane-based activity is important in terms of time and safety. There are several studies for enhancing safety conditions of crane operations on jobsites to decrease the number of fatalities and even increase the productivity. Existing approaches and studies have deployed wireless networks and tracking sensors to detect and identify workers, but high initial cost for installation and maintenance of these technologies and inappropriate feedback for disregarding workers privacy hold down their usability. The purpose of this study is to develop a proactive lifting operation management system to prevent potential accidents caused by tower cranes’ components through using GPS in integrated 3D BIM models. In this study, generated workspaces are utilized to demonstrate areas occupied by workers or equipment instead of using individual tags for each entity. As construction workers may leave their work zone for some reasons, 3D video tracking is applied for identifying and tracking if workers leave their pre-defined workspaces. The developed model captures the load position in real time and subsequently compares the load’s bounding box position with defined area in BIM model. In the developed model, tower crane’s load dimensions and starting point of the loading procedure are inserted and subsequently the model updates the load’s position in real time. The updated position in the 3D model is checked proactively with existing spaces to send alerts in case of overlapping. Two case studies are used to demonstrate the concept and to validate the feasibility of the proposed method. In the first case study the added plug-in is used to generate workspaces for material, equipment and labors and in the second one, the real time safety system is validated in two different scenarios. The developed plug-in in Revit environment enhances timely proximity detection for enhanced safety since it detects objects based on pre-defined spaces and retrieves crane’s load location in the model in real time. Identifying resources of interest which being free of tag and developing the real time conflict detection in Revit can be addressed as main findings of this study

    Computer vision based techniques for fall detection with application towards assisted living

    Get PDF
    In this thesis, new computer vision based techniques are proposed to detect falls of an elderly person living alone. This is an important problem in assisted living. Different types of information extracted from video recordings are exploited for fall detection using both analytical and machine learning techniques. Initially, a particle filter is used to extract a 2D cue, head velocity, to determine a likely fall event. The human body region is then extracted with a modern background subtraction algorithm. Ellipse fitting is used to represent this shape and its orientation angle is employed for fall detection. An analytical method is used by setting proper thresholds against which the head velocity and orientation angle are compared for fall discrimination. Movement amplitude is then integrated into the fall detector to reduce false alarms. Since 2D features can generate false alarms and are not invariant to different directions, more robust 3D features are next extracted from a 3D person representation formed from video measurements from multiple calibrated cameras. Instead of using thresholds, different data fitting methods are applied to construct models corresponding to fall activities. These are then used to distinguish falls and non-falls. In the final works, two practical fall detection schemes which use only one un-calibrated camera are tested in a real home environment. These approaches are based on 2D features which describe human body posture. These extracted features are then applied to construct either a supervised method for posture classification or an unsupervised method for abnormal posture detection. Certain rules which are set according to the characteristics of fall activities are lastly used to build robust fall detection methods. Extensive evaluation studies are included to confirm the efficiency of the schemes

    Video Abstracting at a Semantical Level

    Get PDF
    One the most common form of a video abstract is the movie trailer. Contemporary movie trailers share a common structure across genres which allows for an automatic generation and also reflects the corresponding moviea s composition. In this thesis a system for the automatic generation of trailers is presented. In addition to action trailers, the system is able to deal with further genres such as Horror and comedy trailers, which were first manually analyzed in order to identify their basic structures. To simplify the modeling of trailers and the abstract generation itself a new video abstracting application was developed. This application is capable of performing all steps of the abstract generation automatically and allows for previews and manual optimizations. Based on this system, new abstracting models for horror and comedy trailers were created and the corresponding trailers have been automatically generated using the new abstracting models. In an evaluation the automatic trailers were compared to the original Trailers and showed a similar structure. However, the automatically generated trailers still do not exhibit the full perfection of the Hollywood originals as they lack intentional storylines across shots

    Digital tools in media studies: analysis and research. An overview

    Get PDF
    Digital tools are increasingly used in media studies, opening up new perspectives for research and analysis, while creating new problems at the same time. In this volume, international media scholars and computer scientists present their projects, varying from powerful film-historical databases to automatic video analysis software, discussing their application of digital tools and reporting on their results. This book is the first publication of its kind and a helpful guide to both media scholars and computer scientists who intend to use digital tools in their research, providing information on applications, standards, and problems
    corecore