2,051 research outputs found

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.
&#xa

    Innovative Method for Unsupervised Voice Activity Detection and Classification of Audio Segments

    Get PDF
    An accurate and noise-robust voice activity detection (VAD) system can be widely used for emerging speech technologies in the fields of audio forensics, wireless communication, and speech recognition. However, in real-life application, the sufficient amount of data or human-annotated data to train such a system may not be available. Therefore, a supervised system for VAD cannot be used in such situations. In this paper, an unsupervised method for VAD is proposed to label the segments of speech-presence and speech-absence in an audio. To make the proposed method efficient and computationally fast, it is implemented by using long-term features that are computed by using the Katz algorithm of fractal dimension estimation. Two databases of different languages are used to evaluate the performance of the proposed method. The first is Texas Instruments Massachusetts Institute of Technology (TIMIT) database, and the second is the King Saud University (KSU) Arabic speech database. The language of TIMIT is English, while the language of the KSU speech database is Arabic. TIMIT is recorded in only one environment, whereas the KSU speech database is recorded in distinct environments using various recording systems that contain sound cards of different qualities and models. The evaluation of the proposed method suggested that it labels voiced and unvoiced segments reliably in both clean and noisy audio

    Application of Fractal and Wavelets in Microcalcification Detection

    Get PDF
    Breast cancer has been recognized as one or the most frequent, malignant tumors in women, clustered microcalcifications in mammogram images has been widely recognized as an early sign of breast cancer. This work is devote to review the application of Fractal and Wavelets in microcalcifications detection

    A Nonlinear Mixture Autoregressive Model For Speaker Verification

    Get PDF
    In this work, we apply a nonlinear mixture autoregressive (MixAR) model to supplant the Gaussian mixture model for speaker verification. MixAR is a statistical model that is a probabilistically weighted combination of components, each of which is an autoregressive filter in addition to a mean. The probabilistic mixing and the datadependent weights are responsible for the nonlinear nature of the model. Our experiments with synthetic as well as real speech data from standard speech corpora show that MixAR model outperforms GMM, especially under unseen noisy conditions. Moreover, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM using static as well as delta features. Also, MixAR suffered less from overitting issues than GMM when training data was sparse. However, MixAR performance deteriorated more quickly than that of GMM when evaluation data duration was reduced. This could pose limitations on the required minimum amount of evaluation data when using MixAR model for speaker verification

    Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approach

    Get PDF
    Alzheimer’s disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Westerncountries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by usingautomatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selectedis based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work isfeature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. Thefeature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speechthat are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful whentraining data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters inthe feature vector in order to enhance the performance of the original system while controlling the computational cost.© 2014 Elsevier Ltd. All rights reserved

    Analysis of Vocal Disorders in a Feature Space

    Full text link
    This paper provides a way to classify vocal disorders for clinical applications. This goal is achieved by means of geometric signal separation in a feature space. Typical quantities from chaos theory (like entropy, correlation dimension and first lyapunov exponent) and some conventional ones (like autocorrelation and spectral factor) are analysed and evaluated, in order to provide entries for the feature vectors. A way of quantifying the amount of disorder is proposed by means of an healthy index that measures the distance of a voice sample from the centre of mass of both healthy and sick clusters in the feature space. A successful application of the geometrical signal separation is reported, concerning distinction between normal and disordered phonation.Comment: 12 pages, 3 figures, accepted for publication in Medical Engineering & Physic

    Nonlinear Dynamic Invariants for Continuous Speech Recognition

    Get PDF
    In this work, nonlinear acoustic information is combined with traditional linear acoustic information in order to produce a noise-robust set of features for speech recognition. Classical acoustic modeling techniques for speech recognition have relied on a standard assumption of linear acoustics where signal processing is primarily performed in the signal\u27s frequency domain. While these conventional techniques have demonstrated good performance under controlled conditions, the performance of these systems suffers significant degradations when the acoustic data is contaminated with previously unseen noise. The objective of this thesis was to determine whether nonlinear dynamic invariants are able to boost speech recognition performance when combined with traditional acoustic features. Several sets of experiments are used to evaluate both clean and noisy speech data. The invariants resulted in a maximum relative increase of 11.1% for the clean evaluation set. However, an average relative decrease of 7.6% was observed for the noise-contaminated evaluation sets. The fact that recognition performance decreased with the use of dynamic invariants suggests that additional research is required for robust filtering of phase spaces constructed from noisy time series

    Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures

    Get PDF
    Clinical acoustic voice recording analysis is usually performed using classical perturbation measures including jitter, shimmer and noise-to-harmonic ratios. However, restrictive mathematical limitations of these measures prevent analysis for severely dysphonic voices. Previous studies of alternative nonlinear random measures addressed wide varieties of vocal pathologies. Here, we analyze a single vocal pathology cohort, testing the performance of these alternative measures alongside classical measures.

We present voice analysis pre- and post-operatively in unilateral vocal fold paralysis (UVFP) patients and healthy controls, patients undergoing standard medialisation thyroplasty surgery, using jitter, shimmer and noise-to-harmonic ratio (NHR), and nonlinear recurrence period density entropy (RPDE), detrended fluctuation analysis (DFA) and correlation dimension. Systematizing the preparative editing of the recordings, we found that the novel measures were more stable and hence reliable, than the classical measures, on healthy controls.

RPDE and jitter are sensitive to improvements pre- to post-operation. Shimmer, NHR and DFA showed no significant change (p > 0.05). All measures detect statistically significant and clinically important differences between controls and patients, both treated and untreated (p < 0.001, AUC > 0.7). Pre- to post-operation, GRBAS ratings show statistically significant and clinically important improvement in overall dysphonia grade (G) (AUC = 0.946, p < 0.001).

Re-calculating AUCs from other study data, we compare these results in terms of clinical importance. We conclude that, when preparative editing is systematized, nonlinear random measures may be useful UVFP treatment effectiveness monitoring tools, and there may be applications for other forms of dysphonia.
&#xa

    Continuous Wavelet Transform and Hidden Markov Model Based Target Detection

    Get PDF
    Standard tracking filters perform target detection process by comparing the sensor output signal with a predefined threshold. However, selecting the detection threshold is of great importance and a wrongly selected threshold causes two major problems. The first problem occurs when the selected threshold is too low which results in increased false alarm rate. The second problem arises when the selected threshold is too high resulting in missed detection. Track-before-detect (TBD) techniques eliminate the need for a detection threshold and provide detecting and tracking targets with lower signal-to-noise ratios than standard methods. Although TBD techniques eliminate the need for detection threshold at sensor’s signal processing stage, they often use tuning thresholds at the output of the filtering stage. This paper presents a Continuous Wavelet Transform (CWT) and Hidden Markov Model (HMM) based target detection method for employing with TBD techniques which does not employ any thresholding
    corecore