2,931 research outputs found

    The global spatiotemporal distribution of the mid-tropospheric CO2 concentration and analysis of the controlling factors

    Get PDF
    The atmospheric infrared sounder (AIRS) provides a robust and accurate data source to investigate the variability of mid-tropospheric CO2 globally. In this paper, we use the AIRS CO2 product and other auxiliary data to survey the spatiotemporal distribution characteristics of mid-tropospheric CO2 and the controlling factors using linear regression, empirical orthogonal functions (EOFs), geostatistical analysis, and correlation analysis. The results show that areas with low mid-tropospheric CO2 concentrations (20 degrees S-5 degrees N) (384.2 ppm) are formed as a result of subsidence in the atmosphere, the presence of the Amazon rainforest, and the lack of high CO2 emission areas. The areas with high mid-tropospheric CO2 concentrations (30 degrees N-70 degrees N) (382.1 ppm) are formed due to high CO2 emissions. The global mid-tropospheric CO2 concentrations increased gradually (the annual average rate of increase in CO2 concentration is 2.11 ppm/a), with the highest concentration occurring in spring (384.0 ppm) and the lowest value in winter (382.5 ppm). The amplitude of the seasonal variation retrieved from AIRS (average: 1.38 ppm) is consistent with that of comprehensive observation network for trace gases (CONTRAIL), but smaller than the surface ground stations, which is related to altitude and coverage. These results contribute to a comprehensive understanding of the spatiotemporal distribution of mid-tropospheric CO2 and related mechanisms

    Detection of fossil fuel emission trends in the presence of natural carbon cycle variability

    Get PDF
    Atmospheric CO₂ observations have the potential to monitor regional fossil fuel emission (FFCO₂) changes to support carbon mitigation efforts such as the Paris Accord, but they must contend with the confounding impacts of the natural carbon cycle. Here, we quantify trend detection time and magnitude in gridded total CO₂ fluxes—the sum of FFCO₂ and natural carbon fluxes—under an idealized assumption that monthly total CO₂ fluxes can be perfectly resolved at a 2°×2° resolution. Using Coupled Model Intercomparison Project 5 (CMIP5) 'business-as-usual' emission scenarios to represent FFCO₂ and simulated net biome exchange (NBE) to represent natural carbon fluxes, we find that trend detection time for the total CO₂ fluxes at such a resolution has a median of 10 years across the globe, with significant spatial variability depending on FFCO₂ magnitude and NBE variability. Differences between trends in the total CO₂ fluxes and the underlying FFCO₂ component highlight the role of natural carbon cycle variability in modulating regional detection of FFCO₂ emission trends using CO₂ observations alone, particularly in the tropics and subtropics where mega-cities with large populations are developing rapidly. Using CO₂ estimates alone at such a spatiotemporal resolution can only quantify fossil fuel trends in a few places—mostly limited to arid regions. For instance, in the Middle East, FFCO₂ can explain more than 75% of the total CO₂ trends in ~70% of the grids, but only ~20% of grids in China can meet such criteria. Only a third of the 25 megacities we analyze here show total CO₂ trends that are primarily explained (>75%) by FFCO₂. Our analysis provides a theoretical baseline at a global scale for the design of regional FFCO₂ monitoring networks and underscores the importance of estimating biospheric interannual variability to improve the accuracy of FFCO₂ trend monitoring. We envision that this can be achieved with a fully integrated carbon cycle assimilation system with explicit constraints on FFCO₂ and NBE, respectively

    Evidence of Carbon Uptake Associated with Vegetation Greening Trends in Eastern China

    Get PDF
    Persistent and widespread increase of vegetation cover, identified as greening, has been observed in areas of the planet over late 20th century and early 21st century by satellite-derived vegetation indices. It is difficult to verify whether these regions are net carbon sinks or sources by studying vegetation indices alone. In this study, we investigate greening trends in Eastern China (EC) and corresponding trends in atmospheric CO₂ concentrations. We used multiple vegetation indices including NDVI and EVI to characterize changes in vegetation activity over EC from 2003 to 2016. Gap-filled time series of column-averaged CO₂ dry air mole fraction (XCO₂) from January 2003 to May 2016, based on observations from SCIAMACHY, GOSAT, and OCO-2 satellites, were used to calculate XCO₂ changes during growing season for 13 years. We derived a relationship between XCO₂ and surface net CO₂ fluxes from two inversion model simulations, CarbonTracker and Monitoring Atmospheric Composition and Climate (MACC), and used those relationships to estimate the biospheric CO₂ flux enhancement based on satellite observed XCO₂ changes. We observed significant growing period (GP) greening trends in NDVI and EVI related to cropland intensification and forest growth in the region. After removing the influence of large urban center CO₂ emissions, we estimated an enhanced XCO₂ drawdown during the GP of −0.070 to −0.084 ppm yr⁻Âč. Increased carbon uptake during the GP was estimated to be 28.41 to 46.04 Tg C, mainly from land management, which could offset about 2–3% of EC’s annual fossil fuel emissions. These results show the potential of using multi-satellite observed XCO₂ to estimate carbon fluxes from the regional biosphere, which could be used to verify natural sinks included as national contributions of greenhouse gas emissions reduction in international climate change agreements like the UNFCC Paris Accord

    Past, Present and Future of a Habitable Earth

    Get PDF
    This perspective of this book views Earth's various layers as a whole system, and tries to understand how to achieve harmony and sustainable development between human society and nature, with the theme of " habitability of the Earth." This book is one effort at providing an overview of some of the recent exciting advances Chinese geoscientists have made. It is the concerted team effort of a group of researchers from diverse backgrounds to generalize their vision for Earth science in the next 10 years. The book is intended for scholars, administrators of the Science and Technology policy department, and science research funding agencies. This is an open access book

    Summer soil drying exacerbated by earlier spring greening of northern vegetation

    Get PDF
    Earlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982–2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation. This extra soil drying is projected to amplify the frequency and intensity of summer heatwaves. Most feedbacks operate locally, except for a notable teleconnection where extra moisture transpired over Europe is transported to central Siberia. Model results illustrate that this teleconnection offsets Siberian soil moisture losses from local spring greening. Our results highlight that climate change adaptation planning must account for the extra summer water and heatwave stress inherited from warming-induced earlier greening
    • 

    corecore