9,954 research outputs found

    3-D Face Analysis and Identification Based on Statistical Shape Modelling

    Get PDF
    This paper presents an effective method of statistical shape representation for automatic face analysis and identification in 3-D. The method combines statistical shape modelling techniques and the non-rigid deformation matching scheme. This work is distinguished by three key contributions. The first is the introduction of a new 3-D shape registration method using hierarchical landmark detection and multilevel B-spline warping technique, which allows accurate dense correspondence search for statistical model construction. The second is the shape representation approach, based on Laplacian Eigenmap, which provides a nonlinear submanifold that links underlying structure of facial data. The third contribution is a hybrid method for matching the statistical model and test dataset which controls the levels of the model’s deformation at different matching stages and so increases chance of the successful matching. The proposed method is tested on the public database, BU-3DFE. Results indicate that it can achieve extremely high verification rates in a series of tests, thus providing real-world practicality

    Ensemble of Hankel Matrices for Face Emotion Recognition

    Full text link
    In this paper, a face emotion is considered as the result of the composition of multiple concurrent signals, each corresponding to the movements of a specific facial muscle. These concurrent signals are represented by means of a set of multi-scale appearance features that might be correlated with one or more concurrent signals. The extraction of these appearance features from a sequence of face images yields to a set of time series. This paper proposes to use the dynamics regulating each appearance feature time series to recognize among different face emotions. To this purpose, an ensemble of Hankel matrices corresponding to the extracted time series is used for emotion classification within a framework that combines nearest neighbor and a majority vote schema. Experimental results on a public available dataset shows that the adopted representation is promising and yields state-of-the-art accuracy in emotion classification.Comment: Paper to appear in Proc. of ICIAP 2015. arXiv admin note: text overlap with arXiv:1506.0500

    PCA-RECT: An Energy-efficient Object Detection Approach for Event Cameras

    Full text link
    We present the first purely event-based, energy-efficient approach for object detection and categorization using an event camera. Compared to traditional frame-based cameras, choosing event cameras results in high temporal resolution (order of microseconds), low power consumption (few hundred mW) and wide dynamic range (120 dB) as attractive properties. However, event-based object recognition systems are far behind their frame-based counterparts in terms of accuracy. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional dictionary representation when hardware resources are limited to implement dimensionality reduction. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance and relevance to state-of-the-art algorithms. Additionally, we verified the object detection method and real-time FPGA performance in lab settings under non-controlled illumination conditions with limited training data and ground truth annotations.Comment: Accepted in ACCV 2018 Workshops, to appea

    ProSLAM: Graph SLAM from a Programmer's Perspective

    Full text link
    In this paper we present ProSLAM, a lightweight stereo visual SLAM system designed with simplicity in mind. Our work stems from the experience gathered by the authors while teaching SLAM to students and aims at providing a highly modular system that can be easily implemented and understood. Rather than focusing on the well known mathematical aspects of Stereo Visual SLAM, in this work we highlight the data structures and the algorithmic aspects that one needs to tackle during the design of such a system. We implemented ProSLAM using the C++ programming language in combination with a minimal set of well known used external libraries. In addition to an open source implementation, we provide several code snippets that address the core aspects of our approach directly in this paper. The results of a thorough validation performed on standard benchmark datasets show that our approach achieves accuracy comparable to state of the art methods, while requiring substantially less computational resources.Comment: 8 pages, 8 figure

    Automating image analysis by annotating landmarks with deep neural networks

    Full text link
    Image and video analysis is often a crucial step in the study of animal behavior and kinematics. Often these analyses require that the position of one or more animal landmarks are annotated (marked) in numerous images. The process of annotating landmarks can require a significant amount of time and tedious labor, which motivates the need for algorithms that can automatically annotate landmarks. In the community of scientists that use image and video analysis to study the 3D flight of animals, there has been a trend of developing more automated approaches for annotating landmarks, yet they fall short of being generally applicable. Inspired by the success of Deep Neural Networks (DNNs) on many problems in the field of computer vision, we investigate how suitable DNNs are for accurate and automatic annotation of landmarks in video datasets representative of those collected by scientists studying animals. Our work shows, through extensive experimentation on videos of hawkmoths, that DNNs are suitable for automatic and accurate landmark localization. In particular, we show that one of our proposed DNNs is more accurate than the current best algorithm for automatic localization of landmarks on hawkmoth videos. Moreover, we demonstrate how these annotations can be used to quantitatively analyze the 3D flight of a hawkmoth. To facilitate the use of DNNs by scientists from many different fields, we provide a self contained explanation of what DNNs are, how they work, and how to apply them to other datasets using the freely available library Caffe and supplemental code that we provide.https://arxiv.org/abs/1702.00583Published versio
    • …
    corecore