1,245 research outputs found

    a comparative study of machine learning algorithms for physiological signal classification

    Get PDF
    Abstract The present work aims at the evaluation of the effectiveness of different machine learning algorithms on a variety of clinical data, derived from small, medium, and large publicly available databases. To this end, several algorithms were tested, and their performance, both in terms of accuracy and time required for the training and testing phases, are here reported. Sometimes a data preprocessing phase was also deemed necessary to improve the performance of the machine learning procedures, in order to reduce the problem size. In such cases a detailed analysis of the compression strategy and results is also presented

    Autism Spectrum Disorders Gait Identification Using Ground Reaction Forces

    Get PDF
     Autism spectrum disorders (ASD) are a permanent neurodevelopmental disorder that can be identified during the first few years of life and are currently associated with the abnormal walking pattern. Earlier identification of this pervasive disorder could provide assistance in diagnosis and establish rapid quantitative clinical judgment. This paper presents an automated approach which can be applied to identify ASD gait patterns using three-dimensional (3D) ground reaction forces (GRF). The study involved classification of gait patterns of children with ASD and typical healthy children. The GRF data were obtained using two force plates during self-determined barefoot walking. Time-series parameterization techniques were applied to the GRF waveforms to extract the important gait features. The most dominant and correct features for characterizing ASD gait were selected using statistical between-group tests and stepwise discriminant analysis (SWDA). The selected features were grouped into two groups which served as two input datasets to the k-nearest neighbor (KNN) classifier. This study demonstrates that the 3D GRF gait features selected using SWDA are reliable to be used in the identification of ASD gait using KNN classifier with 83.33% performance accuracy.

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments

    Measuring Glide Reflection Symmetry in Human Movements

    Get PDF
    abstract: Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human walking patterns, especially assessments related to symmetric and asymmetric gait patterns purely based on glide reflection. A Gliding symmetry score is calculated from the data obtained from Motion Capture(MoCap) system. Six primary joints (Shoulder, Elbow, Palm, Hip, Knee, Foot) are considered for this study. Two dierent abnormalities were chosen and studied carefully. All the two gaits were mimicked in controlled environment. The framework proposed clearly showed that it could distinguish the abnormal gaits from the ordinary walking patterns. This framework can be widely used by the doctors and physical therapists for kinematics analysis, bio-mechanics, motion capture research, sports medicine and physical therapy, including human gait analysis and injury rehabilitation.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    The use of inertial measurement units for the determination of gait spatio-temporal parameters

    Get PDF
    The aim of this work was to develop a methodology whereby inertial measurement units (IMUs) could be used to obtain accurate and objective gait parameters within typical developed adults (TDA) and Parkinson’s disease (PD). The thesis comprised four studies, the first establishing the validity of the IMU method when measuring the vertical centre of mass (CoM) acceleration, velocity and position versus an optical motion capture system (OMCS) in TDA. The second study addressed the validity of the IMU and inverted pendulum model measurements within PD and also explored the inter-rater reliability of the measurement. In the third study the optimisation of the inverted pendulum model driven by IMU data was explored when comparing to standardised clinical tests within TDA and PD, and the fourth explored a novel phase plot analysis applied to CoM movement to explore gait in more detail. The validity study showed no significant difference for vertical acceleration and position between IMU and OMCS measurements within TDA. Vertical velocity however did show a significant difference, but the error was still less than 2.5%. ICCs for all three parameters ranged from 0.782 to 0.952, indicating an adequate test-retest reliability. Within PD there was no significant difference found for vertical CoM acceleration, velocity and position. ICCs for all three parameters ranged from 0.77 to 0.982. In addition, the reliability calculations found no difference for step time, stride length and walking speed for people with PD. Inter-rater reliability was found not to be different for the same parameters. The optimisation of the correction factor when using the inverted pendulum model showed no significant difference between TDA and PD. Furthermore the correction factor was found not to be related to walking speed. The fourth and final study found that phase plot analysis of variability could be performed on CoM vertical excursion. TDA and PD were shown to have, on average, different characteristics. This thesis demonstrated that CoM motion can be objectively measured within a clinical setting in people with PD by utilizing IMUs. Furthermore, in depth gait variability analysis can be performed by utilizing a phase plot method
    • 

    corecore